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Abstract 

The use of multiple substrates in color printers requires 
color characterization for each of the individual media. A 
full re-characterization for each substrate is measurement 
and labor intensive. In this paper, a variety of methods are 
proposed and evaluated for determining the color 
characterization for a new substrate based on a complete 
characterization on a reference substrate and a small number 
of additional measurements for the new substrate. This 
saves significant time and effort in comparison to the 
traditional method of repeating the color characterization 
for each new substrate. The methods developed and tested 
include model-based approaches based on Beer’s law, 
Kubelka-Munk theory, and Neugebauer equations; and an 
empirical technique based on principal component analysis. 
Results indicate that the model based techniques offer only 
a small improvement over direct use of the reference 
characterization, whereas, the empirical technique offers a 
more significant improvement with as few as 16-26 
measurements on the new substrate. 

Introduction 

Color calibration of a printer is typically a two-step process. 
In the first step, the printer response is characterized by 
printing a number of color patches with known device 
control values, measuring the colors obtained, and 
generating a characterization function that maps device 
control values, such as CMYK, to corresponding colors 
specified in a device independent color space, such as 
CIELAB. In the second step, the characterization function is 
inverted to determine the device control values required to 
produce a color specified in device independent color space. 
The final color correction that inverts the characterization 
function is often implemented as a 3D look-up table that 
maps from a device independent color space (e.g. CIELAB) 
to the device control values (e.g. CMYK). 

One approach is to ignore the change in substrate and 
use the original characterization for the new substrate. This 
approach is far from satisfactory and will in some cases 
yield large color errors.  The other straightforward 
alternative is to repeat the entire characterization procedure 
for each new substrate. This approach is both measurement 
and labor intensive and can be prohibitively costly in a 

system supporting many different print substrate. The 
intermediate approach explored in this paper is to "correct" 
an available reference substrate characterization for 
additional substrates by using a small number of additional 
measurements. 

Color Characterization for  
Additional Substrates 

Several approaches were developed to re-characterize the 
printer with a small effort when the substrate is changed. 
Each of these methods is based on techniques that attempt 
to predict the spectral reflectance of a patch with specified 
device control values on the test substrate from the known 
reflectance of the patch on the reference substrate with the 
same device control values and characteristics of the test 
substrate. These techniques include model-based 
approaches such as Beer’s law, Kubelka-Munk theory and 
Neugebauer equations, and an empirical regression 
approach based on Principal Component Analysis. 

Beer’s Law 
The first method investigated uses principles motivated 

by Beer’s law.1 The method assumes that the colorant layers 
have no scattering, uniform thickness, and that multiple 
colorant layers combine additively in spectral density. For 
individual colors and solid overprints, under these 
assumptions, the reflectance of a calibration patch under the 
test substrate can be obtained by multiplying the 
corresponding reflectance for the reference substrate with 
the ratio of test substrate to the reference substrate 
reflectance. This is shown in the equation below. The 
reflectance for the new substrate (R2(λ)), can be obtained 
from the reflectance spectrum (R1(λ)) of that colorant 
mixture printed on a known substrate with reflectance 
(Rp1(λ)), and the reflectance of the new substrate (Rp2(λ)). 
The method generalizes to halftone tints under the 
assumption of a spectral Neugebauer model (with or 
without an exponential Yule-Nielsen correction). 

 

    
R2 (λ ) =

R 1(λ )
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Kubelka-Munk Model 
When a colorant is not completely transparent, the 

Beer’s law assumption of zero scattering does not hold and 
a Kubelka-Munk (KM) model that accounts for a colorant’s 
absorption and scattering properties is more suitable. 
According to the KM model,2 the reflectance of a color 
sample is determined by the absorption and scattering (K(λ) 
and S(λ)) coefficients of the colorant material, the thickness 
X of the colorant layer and the reflectance of the substrate 
Rp(λ): 

R(λ ) =

Rp(λ ) − R∞(λ)

R∞(λ)
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where (R∞(λ)) is the reflectance of a colorant sample of an 
infinitely thick sample of the colorant given by 
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The KM model works for single colorants. For solid 
overprints of multiple colorants we use an extension of this 
model derived by Hoffman3, which predicts the reflectance 
of a print composed of multiple colorant layers by 
successively treating each predicted layer reflectance as the 
substrate reflectance for the subsequent layer. Even with the 
extension the KM model is inapplicable for halftone tints. 
We therefore use it with a Neugebauer4,5 model in order to 
predict the spectral response of halftone color prints.  

Although the use of Kubelka-Munk is relatively 
straightforward, it requires a-priori knowledge of many of 
the parameters for the model to work. This work assumes 
that a minimal amount of data is available and that some 
parameters do not change from substrate to substrate.  

Neugebauer Model 
Both the “Beer’s law” and the KM approaches utilize 

only the test substrate reflectance in the prediction process 
and therefore do not require the measurement of any printed 
patches on the test substrate. A small number of 
measurements on the test substrate may be used to assist the 
model-based schemes. The Neugebauer model has been 
widely used to predict the colorimetric response of halftone 
color printers. The original model is essentially an extension 
of the Murray-Davies equation6. The reflectance of a print is 
predicted as the weighted average of the reflectance for the 
Neugebauer primaries that correspond to the prints and solid 
overprints for the colorants, where the weights correspond 
to the fractional area coverages of the Neugebauer 
primaries. For CMYK printers, there are 16 Neugebauer 
primaries, which include the unprinted substrate and all 
possible combinations of the four-color mixtures and the 
Neugebauer model is given by 

    
RCMYK ( λ ) =   wi ⋅ Pi (λ )

1/ n

i=1

16

∑
 

 
 
 

 

 
 
 

n

 

where wi represent the fractional area of primary (i), Pi is the 
reflectance of the (i)th solid color, RCMYK is the predicted 
patch reflectance, and the exponent n is an empirical Yule-
Nielsen7 correction factor included to account for light 
scattering within the substrate. The weights wi are calculated 
from the individual colorant area coverages using the 
Demichel or dot-on-dot model equations.4,5 

In the technique investigated, we explored two options: 
one in which the 16 Neugebauer primaries were printed and 
measured on the test substrate to be modeled and the second 
in which they were derived based on the KM model. 

PCA-Based Empirical Regression 
Instead of using model-based approaches, an alternative 

is to use an empirical technique that treats the problem of 
predicting the color/reflectance on the new substrate as a 
data-fitting problem using a limited number of 
measurements of corresponding patches on both substrates. 
The dimensionality of the problem can be reduced to 
tractable levels using Principal Component Analysis (PCA). 
The spectral reflectance data is approximated using a small 
number of PCA basis vectors. Each reflectance is 
represented as the corresponding set of weighting factors for 
the PCA representation. A spectral reflectance R(λ) is  
represented in its sampled form as a vector  r, which is 
approximated using a set of basis vectors obtained through 
PCA as 

    
ˆ r = Px r  

where P is the matrix with the orthonormal PCA bases as its 
columns, P=[p1 p2 …pr] and xr=PTr is the r × 1vector of 
PCA basis weights representing r. In our analysis, we used 
r=10 PCA basis vectors, which significantly reduces the 
dimensionality from the typically 31-36 samples in r while 
still ensuring that the PCA approximation is accurate. 

Based on a small set of training samples corresponding 
to identical CMYK values printed on the reference and test 
substrates, a linear transformation is estimated from the 
PCA representation on the reference substrate to the PCA 
representation on the test substrate. The estimated 
transformation is then applied to other reflectance 
measurements available on the reference substrate to 
estimate corresponding reflectance spectra on the test 
substrate.  Specifically, if x is the r × 1 vector of PCA basis 
weights for a patch printed on the reference substrate with a 
given set of device control values, the corresponding r × 1 
vector y of  PCA basis weights for a patch printed on the 
test substrate with the same set of device control values is 
estimated as 

xTy =ˆ
 

where T is an r × r matrix.  If the vectors of PCA basis 
weights for the set of training patches printed on the 
reference substrate are x1, x2, x3, … xK and corresponding 
vectors of PCA basis weights for the test substrate are y1, y2, 
y3, … yK, respectively, the least-squares optimal linear 
transformation T is given by:  
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and XT(XXT)-1 represents the pseudo-inverse of the r × K 
matrix X. 

Experimental Results and Analysis 
Twelve different substrates varying in coating 

characteristics, weight, and paper color were chosen for the 
experimental investigation. Due to spare constraints, only 
the results for a subset of 4 substrates are presented here. 
Complete results and more details can be found in a 
companion journal paper.8 Table 1 lists the substrates 
grouping them by coated and uncoated types and indicating 
their specified weight in grams per square meter (gsm). 

Experiments were conducted on a four color CMYK 
Xerographic printer. For each of the substrates included in 
the study, a complete printer characterization target having 
289 patches was printed and measured. For each of the 
techniques investigated, the spectral reflectance values 
corresponding to the characterization target on the test 
substrate were estimated from the spectral reflectance 
values on a reference target. The color error in these 
estimates in comparison to the measured values was used as 
a figure of merit for comparing the different schemes. An 
exhaustive test was conducted in which each of the 
substrates was designated the reference substrate in turn and 
used to predict the measurements corresponding to the 
characterization target for each of the remaining 11 
substrates. As indicated earlier, only a small subset of 
representative results are presented here to illustrate the 
observed trends.  

The various methods utilize varying degrees of 
information about the colorants and the test substrate, and 
roughly in order of increasing effort are a) no re-
characterization, b) adjustment based on Beer’s law using 
measured test substrate reflectance, c) Adjustment based on 
a Kubelka-Munk (KM) Model for predicting the 
Neugebauer primaries and a Neugebauer model for 
estimating the spectra of halftone tints, d) Adjustment based 
on the Neugebauer model for halftones with actual 
measuments of the 16 Neugebauer primaries, e) Adjustment 
based on the PCA based empirical regression technique, 
where the transformation from the PCA representation on 
the reference substrate to the PCA representation on the test 
substrate was determined using a subset of the printer 
characterization target consisting of 26 corresponding 
patches on the respective substrates.  There is also a sixth 
case, which involves complete recharacterization by 
measuring 289 patches on the test substrate. For the chosen 
figure of merit, the estimation error in this case is zero. 

Figure 1a depicts a plot of the average color error of 
these compensation techniques for four substrates. The 
absicssa of the plot represents the test substrate for which 

reflectance values are estimated using each of the other 
substrates as reference substrates in turn. The ordinate 
represents the average color error in the estimates in CIE 
∆Ε94

* units across all the patches in the target and across the 
three choices of the reference substrate. The five individual 
curves in the plot represent the different adjustment 
techniques and are identified in the legend.  Figure 1b 
shows the 95th percentile values of the color errors along the 
ordinate axis and has other parameters identical to Fig. 6a. 
From the curve corresponding to no adjustment (none), we 
can see that there are significant differences among the 
different substrates with average color difference around 3.5 
∆E94

* units and a 95-percentile value for the color difference 
around 6.0 ∆E94

* units.  The curves for the minimal 
measurement model based approaches (Beer’s Law and 
KM) on these plots are quite close to the case of no 
adjustment, indicating that these approaches offer only 
small improvements. The approach based on the 
Neugebauer model incorporating actual measurements of 
the 16 Neugebauer primaries offers reasonable 
improvement for substrates 2, 4, and 9 but only a minor 
improvement for substrate 6. The empirical regression 
technique based on PCA consistently provides significantly 
lower error than the no adjustment case and among the 
techniques investigated, it is the most successful at 
predicting the colors for the characterization target  on the 
test substrate. 

Figure 2 summarizes the performance of each of the 
techniques in a bar graph. The abscissa of the bar graph is a 
rough depiction of the effort required in terms of additional 
measurements on the test substrate and the height of the 
bars indicate the average and 95-percentile values of the 
∆E94

* color error in the prediction. At the lowest end of the 
effort scale is the case of using the measurements on the 
reference substrate directly with no adjustment and at the 
highest end is the case of complete re-characterization on 
the test substrate by re-measuring the entire characterization 
target. Each data point is the average across all patches. The 
figure shows that as the number of measurements increases, 
the accuracy of the spectral prediction increases.  

Of the four prediction techniques implemented, the best 
results were obtained with the empirical regression 
technique using PCA. The performance of the model based 
Beer’s law and Kubelka-Munk techniques is rather poor and 
offers only a small improvement over direct use of the 
reference substrate data. Several modeling assumptions and 
uncontrollable variables contribute to the poor performance 
of the model-based schemes. Beer’s law assumes that the 
toners are transparent, exhibit zero scattering and have 
constant thickness across the different substrates. All of 
these are unrealistic assumptions. Kubelka-Munk, although 
trying to account for some of Beer’s law’s deficiencies by 
compensating for absorption and scattering coefficients 
separately, also assumes a planar non-interspersed 
configuration for the colorant layers and thicknesses for the 
layers that are invariant under change in substrate and 
constant over the spatial extent of a patch. These 
assumptions are unrealistic but cannot be readily improved 
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upon without additional measurement data for the test 
substrate.  

Both the ‘Neugebauer with measured primaries’, and 
‘principal component analysis’ techniques improve results 
significantly. While these techniques do require additional 
measurements, the number of measurements (16 and 26) is 
much smaller than that of the complete characterization 
target and can significantly reduce the effort for re-
characterizing the printer in response to drift when a large 
number of substrates are involved. 

For the PCA based regression technique, the 
distribution of color errors is depicted in Figure 3, where 
histograms of the color errors over the printer 
characterization target are presented for the case of no 
compensation and compensation based on the PCA 
regression technique. From the histograms, it is clear that 
the use of an incorrect substrate calibration will result in 
significant errors. The PCA substrate compensation model 
significantly reduces both the mean color difference and the 
standard deviation. 

The distribution of errors in color space is further 
illustrated in Figs. 4 and 5, where the errors for the 
individual patches on the printer characterization target for a 
sample reference and test substrate pair are shown in 
CIELAB space for the case of no compensation and for the 
PCA based regression technique, respectively. In both 
figures the errors are depicted in plots of a* vs L*, b* vs L*, 
and a* vs b* so that the three dimensional distribution of the 
errors may be visualized. In the plots of Figure 4 one can 
see that the dominant error caused by the direct use of the 
reference substrate characterization on the test substrate is a 
decrease in lightness. One can also see that the change in 
substrate causes a change in the black point. If not 
accounted for correctly, this will result in a reduction of the 
substrate’s characterized dynamic range. In addition to the 
change in lightness, systematic trends in the color errors can 
also be seen in the a* vs b* plot. By using the PCA based 
empirical regression technique to compensate for the 
change in substrate, it is possible to improve the substrate 
characterization significantly. This can be seen in Figure 5, 
where the errors are significantly smaller than those in Fig 4 
and only relatively minor trends can be seen. The algorithm 
compensates for the change in black point of the substrate, 
and significantly reduced the magnitude of the errors in hue 
and chroma. 

Conclusion 

In this paper we evaluated several techniques for estimating 
the printer characterization for a new substrate based on the 
available characterization for a reference substrate and a 
small number of measurements on the new substrate. The 
research is motivated by the requirement for supporting a 
large number of substrates in a typical printing environment 
and providing color management capability for the multiple 
substrates in the presence of printer drift without excessive 
effort. The proposed techniques include three model-based 
approaches: Beer’s Law, Kubelka-Munk theory, and 

Neugebauer model; and an empirical regression technique 
that exploits principal components analysis (PCA) for 
reducing the dimensionality of the problem to a tractable 
level.  The techniques are experimentally evaluated using a 
CMYK xerographic printer. While the only knowledge 
required for the Beer’s law and (planar) Kubelka-Munk 
methods is the reflectance of the new substrate, these 
methods provide only small improvement over the direct 
use of the reference substrate characterization on the test 
substrate. The unrealistic modeling assumptions required in 
the absence of additional measurement data on the new 
substrate are the primary reason for the poor performance of 
these techniques. The Neugebauer model and the empirical 
regression technique based on PCA each utilize more 
measurements, 16 Neugebauer primaries in the former case 
and 26 in the latter. Both provide a significant improvement 
over the direct use of the reference substrate 
characterization with the empirical regression technique 
providing a more consistent and better improvement than 
the Neugebauer model. While the techniques do require 
measurement of additional patches on the test substrate, the 
effort in measuring the additional patches is still 
significantly smaller than the effort required for measuring 
an entire printer characterization target on the test substrate. 
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Table 1. Names, Coating Characteristics and Weights for Four Substrates Used in the Investigation 
 

Substrate Coated Weight 
Paper 02 3R3874 No 90 gsm 
Paper 04 Potlach Vintage Velvet Crème Yes 80 gsm 
Paper 06 Xerox Ultraspec Gloss Yes 80 gsm 
Paper 09 Consolidated Centura Gloss Yes 80 gsm 
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Figure 1. (a) Average  and  (b)  95 percentile color error (∆E94

*) for predicted test substrate reflectances. 
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Figure 2. Effort vs. accuracy for prediction techniques. 
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Figure 3. (a) Histogram of ∆E*94 errors between CIELAB values measured on the reference (substrate 1) and test (substrate 4); (b) 
Histogram of ∆E*94 errors between the CIELAB values predicted by PCA and values measured on the test substrate. 
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Figure 4. CIELAB values measured on a reference substrate (x) when compared to the CIELAB values (•) measured on the test substrate. 
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Figure 5. CIELAB values measured on a reference substrate (x) when compared to the reconstruction CIELAB values (•) predicted using 
the model. 
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