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Abstract 

The color image has a various edge profile. In the 
conventional single kernel filter has the drawbacks of 
exhausting background noises or insensitivity to the dull 
edges. In the previous paper1, we proposed a new image 
sharpening method adaptive to the edge profiles. In this 
paper, we present its advanced model, which has both 
sharpening and smoothing functions. In addition, the paper 
assesses the edge sharpness factors by introducing the 
indices, such as ES (Edge Sharpness), FS (Spatial Frequency 
Sharpness), and Nf (Flat Area Noise). The improved model 
makes the flat area noises intentionally smoothed with 
preserving the enhanced edges. The sharpening filter is 
applied only to the luminance Y image to keep the gray 
balance. After pre-scanning the Y image with sharp GD filter, 
the edge map is generated by classifying the edge types into 
hard, medium, soft, and flat zones. The multiple GD 
operators with different deviations, σ1, σ2, and σ3 are 
selectively applied to the corresponding edge zones of Y 
image by looking up the edge map. Here the smoothing 
filters are applied only to the flat zones to reduce the 
background noises. In simple, the normal Gaussian filter is 
used as a noise smoother. In comparison with conventional 
method, the proposed model worked excellent to sharpen the 
different edge slopes naturally together with dramatically 
reducing the background noises. 

Introduction 

The color image has different edge profiles depending on the 
characteristics of the objects placed in the scene. In the most 
simple conventional edge enhancement method, a single 
sharpness filter such as digital Laplacian or unsharp mask 
operator is applied to the entire image. The non-adaptive 
single sharpness filter is known to have the following 
drawbacks such as 
[1] random noise in flat area is amplified with edge 
enhancement. 
[2] dull edges are not well sharpened by a single spatial 
operator with small size 
[3] coloring in the gray edges by unbalanced RGB  
responses. 
In the unsharp masking approach, a fraction of the high-pass 
filtered version of the image is added to the original image. 

It is simple, but enhances the noise and/or digitization effects 
resulting in visually unpleasant image. While the noise can 
be suppressed with low-pass filters associated with the 
blurring of the edges. Ramponi et al proposed a nonlinear 
unsharp masking method2, which combines the features of 
both high-pass and low-pass filters. Inoue and Tajima 
reported an adaptive image sharpening method3, which 
estimates the edge sharpness by high band-pass filter based 
on DOG function. 
However, these methods don’t suppress the flat area noises 
sufficiently. Also, the conventional Laplacian filters don’t 
create the natural sharpness, because they have local edge 
responses different from the receptive field in human vision. 
In the proposed method, multiple edge enhancement filters 
are applied to work adaptive to the different edge slopes and 
to work intentionally smoothing the background noise in 
the flat areas avoiding the enhancement. The coloring 
problem in grayish edges is easily resolved by applying the 
sharpening filters only to the luminance signal. The 
enhanced composite luminance signal works to recover the 
sharpness for component color signals through the inverse 
matrix. 

Edge Sharpening Operator 

A variety of simple cell receptive field models for human 
vision have been considered such as 
Gaussian Derivative (=Hermite Polynomial*Gaussian) 
Gabor(=Cosine·*Gaussian) 
DOG(Difference-Of-Gaussian) 
DOOG(Difference-Of-Offset-Gaussian) 
DODOG (Difference-Of-Offset-DOGS) 
Stork and Wilson4, Yang5, and Klein et al6, disputed which 
one, Gaussian derivative (GD) or Gabor7 could minimize the 
joint space-spatial frequency uncertainty ∆x∆ω. Young8  
and others reported the GD is better than Gabor. DOOG is 
known to be a good approximation to GD, while DOG is not 
fit to it. Marr and Hildreth9 operator using GD has been 
applied to detect zero-crossing edges. Here we also applied 
GD-based operators.  
The basic Gaussian distribution function in two dimensions 
is defined by 
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Its second derivative is given by  
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Fig.1 shows the 3D shape of GD spatial filter and its cross 
sectional view. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 GD operator based on human visual field response 

 
The effective field spreads to σ4r2 ±≅ from center. Hence 
M≅8σ +1 will be sufficient to reflect the receptive field. For 
example, 5×5(σ=0.5) ∼ 13×13(σ=1.5) matrices may be 
applied to describe the GD filters. 

The edge signals are extracted from image f(x, y) by the 
two-dimensional convolution operation as follows. 

( ) ( ) ( )y,xfy,xGy,x 2 ⊗−= ∇δ  (3) 

Where, symbol ⊗ denotes the convolution operation and the 
edge sharpness is measured by operating the pre-scan filter 
-∇2GS with appropriate sharp standard deviation σS. 

Multi-Scale Filtering by Edge Segmentation 

Fig.2 illustrates the sharpening process in the proposed 
system. First, the RGB image is transformed into luminance 
-chrominance image such as YCrCb or YIQ. The edge 
enhancement is applied only to the luminance Y image to 
keep the gray balance on the edges. The edge strengths are 
analyzed by the histogram of pre-scan edge signal δS(x, y) 

and classified into multiple zones reflecting the edge profiles, 
such as, hard, medium, soft, and flat. Thus the edge map is 
generated to discriminate these edge types. The multi-scale 
Gaussian derivative operator -∇2G with different deviation 
σ1, σ2, and σ3 is applied to Y image and the hard edge δ1(x, y), 
medium edge δ2(x, y), or soft edge δ3(x, y) are detected in 
response to the edge slopes. In addition, a Gaussian 
smoothing filter GF(x, y) with σF is intentionally applied to 
the flat area to reduce the background noises. 
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Fig.2 Multi-scale adaptive image sharpening process 
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These multi-scale edge operators are selectively switched by 
looking up the edge map classifying the edge types. 
Then, the luminance Y image is sharpened or smoothed 
according to the edge discriminator Eflat(x, y)=0 or 1 and 
edge type indicator E as follows. 

( ) ( ) ( ) ( ) ( ){ } ( )
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edgesoftfor3,edgemediumfor2,edgehardfor1E

areaedgefor0

areaflatfor1
y,xE

y,xy,xE1y,xfy,xGy,xEy,x`f

flat

EflatFflat

===




=

−+⊗= δ

      (5) 

Here in the flat area, the convolution of the original image 
with Gaussian filter reduces the background noise  
Finally, the original Y image is replaced by sharpened 
luminance image Y’ and converted into R’G’B’ primary color 
image by inverse transform. 

GD Kernel Design 

In practice, the GD filters are designed in discrete digital 
form considering the following conditions. 
[1] The filter is approximated by M × M square matrix.  
[2] The weights of GD filter should be equivalent to the local 
integral of continuous GD function in between discrete 
lattice points. 
[3] The sum of GD filter weights is to be equal to zero not to 
respond to flat signals. 
 
The matrix size M of GD filter depends on the standard 
deviation σ. As shown in Fig.1, the cross sectional profile of 
-∇2G(x,y) in radial direction has the well-known Mexican hat 
shape with zero cross points at σ2r0 ±=  and minimum 
peaks at σ2r1 ±= . 
The two-dimensional GD function -∇2G(x,y), spreading in 
radial direction, is approximated by M × M square matrix 
W=[wij] on discrete lattice points [i, j].  
To satisfy the condition [2], we take an odd integer 
M=2m+1(m=1,2,...) and the weights [wij] are calculated by 
the following local integral between the lattice points [i, j]. 
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Finally, the weights [wij] are adjusted to meet the zero sum 
condition [3], and corrected to [wij’] as follows. 
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Because the GD function is spreading infinitely in radial 
direction and approximated by a limited square matrix W, the 
negative weights outside of matrix are omitted. Then, the 
sum of positive weights W+ and the sum of negative weights 
W- are not balanced causing the non-zero sum as   
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Where, wij
+ and wij

- denote the weights with positive and 
negative values. ∆W reflects the lacked negative weights and 
is compensated by adjusting [wij

-] as follows. 
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Since ∆W is positive and W- is negative, the corrected 
negative weights [wij

-’] are amplified by the factor of 
-(∆W/W-) as compared with original [wij

-].  
The matrix W to satisfy Eq. (7) is given by 

W=[wij’]=[ wij
+]+[ wij

-’]   (10) 

The design of filter weights based on the condition [2] and 
[3] helps to make use of smaller size matrix and reduces the 
computation costs for filtering. In practice, for example, the 
kernel size M=9 was available.  

Sharpness Factor 

To estimate the sharpening effects, any sharpness index is 
necessary. Inoue and Tajima introduced the edge sharpness 
index ES to measure the strength of edge components after 
sharpening by  

• Edge Sharpness: ES 

AreaEdgeofamount:A,filtersharpening:s

A

dydxy,xsy,xf
ES

Efilt

E

filtE∫∫ ⊗
=

)()(

(11) 

ES is an effective index to measure the enhanced edge 
components existing in the edge areas. 
In addition, we newly introduced the following indices to 
assess the sharpened image quality taking the other visual 
factors into consideration. 

• Frequency Sharpness: FS  

( ) ( ){ } ( )
( ) ( )∫

∫ −
=

ωωω

ωωωω

dVF

dVFF
FS

org

orgsharp
   (12) 

FS means the enhanced Fourier spectra after sharpening 
measured in 1-D diagonal spatial frequency ω cycle/deg. 

( )ωorgF  and ( )ωsharpF  denote the original and sharpened 

Fourier spectra. 

• Mean Square Error: MSE 

( ) ( ){ } dxdyy,xfy,xfMSE 2
orgsharp∫∫ −=  (13) 

MSE means well-known mean square error between the 
original and the sharpened images. 
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• Background Noise in flat area : Nf 

( ) ( ) ( ){ } dxdyy,xfy,xfy,xEN 2
orgsharpflatf ∫∫ −=  (14) 

Nf reflects the noise power measured in the flat area except 
edge areas and signifies very important quality assessment 
measure.  

Experimental Results 

 Fig.3 shows an example of sharpened images by the 
proposed multi-scale adaptive method in comparison with 
non-adaptive single kernel method in the close-up views: 
Here, conventional single GD method used a GD kernel with 
σ=0.6 designed to response to the sharp edges, while the 
proposed multi GD method applied the same GD filter with 
σ=0.6 for pre-scanning and used three types of GD filters 
with σ=0.6, 0.7, and 0.8 for hard, medium and soft edges. 
The normal Gaussian smoothing filter with σ=1.0 was 
applied to the flat area. As clearly viewed, the flat area noises 
are enhanced together with the edges in the conventional 
method, but are dramatically reduced in our method. 
Watching carefully, the proposed method provides with 
better background than the original by noise reduction 
smoothing filter and natural sharpening effects adaptive to 
the hard, medium, and soft edge slopes in the image. 
 Fig.4 illustrates a comparison in the sharpened edge 
profiles along a scan line shown in lower butterfly image (a) 
in Fig.3. The figure shows how the proposed multi-scale GD 
filters work adaptive to the edge slopes, where the solid 
black, dotted green, and solid red lines correspond to the 
profiles of original, sharpened by single GD, and by 
proposed multi GD method. As shown in these profiles, the 
proposed method has both the sharpening and smoothing 
effects. The red line is smoother than the original in the most 
left side of the scan line, but well responding to the edge 
slopes in the other parts. On the contrary, the dotted green 
line causes the unwanted enhancement of background small 
noises in the flat area.  

Fig.5 illustrates another comparison. In this sample, 
multi-GD filters worked to sharpen the foreground image, 
while the smoothing filter worked to smooth the background 
image and dramatically improved its quality by reducing the 
flat areas noises.  

Fig.6 shows different effect from Fig.5. The center 
house with triangle roof includes many sharp edges while 
right building has rugged but slow gradient walls. These 
two buildings are located side by side but the center was 
sharpened and the wall of right building was smoothed in 
the proposed method. However the single GD filter 
enhanced the small ruggedness unnecessarily.           

Fig.7 shows the measured edge sharpness factor for 
typical test images after sharpening. The results by 
proposed method is compared with the conventional single 
GD filtering processed by two different σ=0.6 and σ=0.7. 
The ES values by these two single kernel methods are larger 
than our method, because they works to enhance all the 
edge components in the image uniformly, while the 

proposed model operate the multiple filters, adaptive to the 
edge types not to enhance all the edges unnecessarily.  

However, as for the frequency sharpness factor FS, the 
proposed method behaves to lift up the spatial frequency 
components in the visible range comparative to the single 
kernel method as shown in Fig. 8. 

Fig.9 illustrates a comparison of the flat area noise for 
typical standard test images. It is clear the noise powers are 
dramatically reduced in the proposed method. 

Discussion and Conclusions 

A multi-scale adaptive image sharpening method with noise 
smoother is proposed. Multiple Gaussian derivative 
operators have been applied adaptive to the edge slopes and 
resulted in natural sharpness improvements with smoothing 
the background noises. 
The classification of edge strengths are based on the 
histogram of the edge signals and also dependent of the 
image contents. At present, the segmentation of edge types to 
make the edge map is based on the empirical division by 
referencing the normalized standard deviation σ. The 
advanced way to generate the better edge map is under 
development. Future works on the subjective sharpness 
quality assessments are under planning based on 
psychophysical experiments.  

References 

1. H. Kotera et al, Proc.8th CIC, p.149-154 (2000) 
2. G. Ramponi et al, J. E. I., 6(1), pp.353-365(1996) 
3. A. Inoue and J. Tajima, IEICE TTRANS. INF. & SYST., E76-D, 

10, pp.1174-1180(1993) 
4. D. G. Stork and H. R. Wilson, J. Opt. Soc. Am. A/7, 8,   

pp.1362-1373(1990) 
5. J. Yang, J. Opt. Soc. Am. A/9, 2, pp.334-336(1992) 
6. S. A. Klein and B. Beutter, J. Opt. Soc. Am. A/9, 2,   

pp.337-340(1992) 
7. D. Gabor, J. Inst. Elec. Eng., 93, pp.429-457(1946) 
8. R. A. Young, Proc. SPIE, 1453, pp.92-123(1991) 
9. D. Marr and E. Hildreth: Proc. R. Soc. Lond., B207, 

pp.187-217(1980) 
10. R. G. Barten, J. Opt. Soc. Am.,A/7, 10, pp.2024-2031 (1990) 

Biography 

Hiroaki Kotera received his B.S degree from Nagoya 
Institute of Technology and Doctorate from University of 
Tokyo. He joined Matsushita Electric Industrial Co in 1963. 
Since 1973, he has been working in digital color image 
processing at Matsushita Research Institute Tokyo, Inc. In 
1996, he moved to Chiba University. He is a professor at 
Dept of Information and Image Sciences. He received 
Johann Gutenberg prize from SID in 1995 and journal 
awards from IS&T in 1993, from IIEEJ in 1990 and 2000. 

IS&T/SID Tenth Color Imaging Conference

199



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Comparison in sharpening effects 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Comparison of edge profiles along a scan line 
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Fig.6 Comparison of edge sharpness factors 

Fig.8 Comparison of frequency sharpness factor FS 

Fig.9 Comparison of flat area noises 
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Fig. 5 Smoothed rendition in background scene 

Fig.7 Comparison of edge sharpness factor ES 
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