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Abstract 

Binary Dither Interpolation (BDI) is a linear interpolation 
algorithm simpler and faster than other methods such as 
tetrahedral interpolation. Conversion methods employing a 
lookup table (LUT) process color values in three steps: 
divide inputs into a table indices and fractions to be 
interpolated, select LUT entries based on the indices, and 
weight the selected entries based on the fractions. 

In contrast to other more geometrically-based methods, 
BDI generates a base index by truncation, then uses the 
truncated fractions to conduct a binary search among 
selected entries. In spite of having a very simple 
neighborhood dither implementation, the perceived quality 
of resulting images is comparable to that of more 
conventional methods, particularly with constraints on 
memory access. This paper describes some implementation 
costs and image quality trade-offs among trilinear, 
tetrahedral and binary dither interpolation for color space 
conversion of digital images. 

1. Introduction 

Interpolation tables are often employed for color space 
conversions.1 Historically, printing has been the 
predominant application for interpolated color conversion, 
but some recent color video display technologies (such as 
LCDs) also require relatively complex color space 
manipulations for good color fidelity. At the same time, 
some color space representations allowing higher 
information coding density than RGB involve conversions 
that are relatively expensive to be performed in real time. 
Digital processing costs continue to decrease, but simpler 
and faster color conversion methods with good quality 
could accelerate the acceptance of advanced color devices 
and interchange representations.2 

Precise relationships between perceived colors and 
control signals for devices such as printers typically defy 
terse analytical definition and also change over time. LUTs 
are applicable when the relationships can be usefully 
approximated as linear between adjacent table entries. For 
modern digital processing, the speed of interpolation can be 
constrained by the time to access LUT entries stored in 
random access memory. Faster memory will enable higher 
pixel conversion rates, but methods which require fewer 
accesses allow the use of slower and lower cost memory. 
Lowest cost embedded methods can avoid a requirement for 

general purpose or digital signal processor cores by 
employing only operations which can be economically 
implemented in ASIC and FPGA chips instead of general 
purpose processors. Algorithms based upon relatively few 
primitive logic functions, such as AND, OR, XOR, bit 
shifts, unsigned integer ADD and subtract, with minimal 
requirements for access to bulk random access memory 
(RAM), are preferable to those requiring frequent RAM 
access or more general arithmetic logic. 

Recent progress in spectral-based and principal 
component image representations present additional 
challenges for geometrically-based color space 
interpolations. For example, n-linear interpolation among 
six components requires access to 64 LUT entries per 
conversion, while the six-dimensional simplex interpolation 
involves a somewhat cumbersome task of selecting the 
correct set of seven from 64 LUT entries. 

Color information is often represented by three 8-bit 
bytes, one for each tristimulus channel. Since humans can 
visually discern roughly 100 increments along each 
tristimulus axis, quantizing to more than twice that precision 
supports the illusion of continuously varying colors. 
Converting from a 24 bit color space encoding can be 
accomplished by a lookup table (LUT) with 224 entries. 
However, RAM storage for 50 megabyte tables is still 
considered expensive. Many color spaces are defined with 
explicit and separable algebraic conversions. However, 
these conversions often involve mathematical functions for 
which sufficiently fast and accurate digital implementations 
remain too costly for widespread deployment. A lookup 
table with integer interpolation remains a viable option. 

Sparse tables have long been used for characterizing 
relatively complicated numeric relationships. Uniform 
spacing simplifies tables implementation, and table size is 
determined by the desired range and accuracy of results. 
Linear interpolation can be applied provided relationships 
are sufficiently linear among nearest table entries. Cubic 
splines could be applied to improve interpolation accuracy 
with sparser tables, but 32 LUT accesses are required for a 
3-dimensional cubic spline interpolation, and the time for 
each LUT access becomes a limiting consideration in digital 
implementations. For a number of tristimulus color spaces, 
including sRGB and CIELab, 17 × 17 × 17 color LUTs are 
common. Starting with 8 bits for each tristimulus value, an 
interpolation unit cube is selected by truncating each value 
to its 4 most significant bits. 
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Special precautions have to be taken in last input 
interval when using bytes for table values as well as indices. 
There are two basic methods to special case the final table 
intervals for byte indices and byte table values: (1) 
recognize final intervals as one unit shorter than others; (2) 
rescale final table entries. However, rescaling in general 
requires table values outside the range of possible byte 
values. In closed systems, integer interpolation may be 
employed without special treatment for the last interval by 
appropriate compensations in other processing, such as 
halftone threshold array values. 

Implementing an interpolation using only non-negative 
integers is attractive for speed and cost considerations and 
seems reasonable, given inputs, outputs and LUT of 
constrained integer precision. At the same time, avoiding 
division by other than powers-of-two (which can be 
accomplished by shifts) also helps minimize 
cost/performance. Round-off errors are a consideration in 
integer processing. Given that in practice the difference 
between 0 and 1 is often more important than the difference 
between 254 and 255, it is generally appropriate to arrange 
LUTs so that small values are concentrated near the origin. 
For XYZ and RGB, this may involve inverting inputs when 
outputs will be in a subtractive color space. 

2. Linear Interpolation Algorithms 

Digital table interpolation proceeds by selecting a nearest 
set of table entries. For example, consider a 2-D table T 
representing a function of arguments X and Y. Values X 
and Y are converted to grid indices x, y and fractions 0 • a, 
b • 1, respectively. 

Two-dimensional n-linear interpolation (bilinear 
interpolation) calculates 

f(X, Y) = (1 – a)(1 – b)Tx,y + a(1 – b)Tx+1,y + 
    b(1 – a)Tx,y+1

 + abTx+1,y+1
. 

Two-dimensional simplex interpolation (triangular 
interpolation) uses only three vertices of the lookup table 
surrounding the interpolated point. If a > b: 
 

f(X, Y) = (1 – a)Tx,y + (a – b)Tx+1,y + bTx+1,y+1
,  

else, for a  • b: 
f(X, Y) = (1 – b)Tx,y + (b – a)Tx,y+1

 + aTx+1,y+1
. 

 
While triangular interpolation considers numeric rank 

among fractions, BDI considers bit combinations of equal 
significance in fractions, assigning weights according to 
significance. A 4-bit two-dimensional BDI calculates: 

 
 f(X, Y) = (8 + 8Tx+(8&a)/8, y+(8&b)/8 

 + 4Tx+(4&a)/4, y+(4&b)/4 
 + 2Tx+(2&a)/2, y+(2&b)/2 
 + Tx+(1&a),y+(1&b) 
 + Tx,y)/16 

 
where ’&’ represents bit-wise logical AND. 

The above equations can be generalized to higher 
dimensions. For this paper our focus is on three-
dimensional interpolation for color conversion. 
 

 

Figure 1. Noisy gray interpolation from 24-bit CIELab to floating 
point RGB (R - G plotted). 

 
Ranking fractions for simplex interpolation becomes 

increasingly expensive for higher dimensions, while BDI 
masks fraction bits of equal significance from additional 
fractions to select which table entry is assigned a powerof- 
two weight. Ranking fractions will minimize the table 
entries accesses for dimensions less than the number of bits 
of precision in the fractions. Being fundamentally algebraic, 
albeit with some iterations for selection and ranking, 
tetrahedral interpolation is readily described by algebraic 
expression, as above. BDI is a substantially binary 
procedure, more readily described by pseudo-code. 
Comparable integer pseudo-codes for BDI and tetrahedral 
interpolation, both interpolating for the four least significant 
bits of 24-bit RGB, are shown in Figures 4 and 5. 

Like simplex interpolation, BDI can access fewer LUT 
entries than n-linear interpolation. As with simplex, the 
number of LUT entries which BDI accesses is input data 
dependent. For example, truncated 4-bit tristimulus 
fractions 0100,0100,0100 will only access two of eight 
nearest table entries: [0,0,0] and [1,1,1]. Simplex 
interpolation and binary dither are less robust than n-linear 
to noise in sparse table entries. Specifically, as fewer table 
entries are used for each color space conversion, model-
based LUTs are more likely to give smooth results than 
tables inverted from data measurements by numerical 
methods. LUT generation is relatively infrequent in 
comparison to LUT usage, so using more sophisticated 
processing to improve the quality of frequently used LUTs 
seems an easy trade-off. 

Trilinear conversion is often used for tristimulus 
spaces, but requires access to eight lookup table (LUT) 
entries for each conversion. Tetrahedral and BDI are at a 
disadvantage when interpolating neutrals from a space such 
as CIELab, where neutrals lie along an axis (Figure 1). On 
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the other hand, Figure 2 shows errors of noisy gray 
interpolation from 24-bit RGB to floating point CIELab. 
Trilinear can generate anomalous results, for example when 
calculating near-neutral values along diagonals in RGB-like 
spaces. 
 

 

Figure 2. Noisy gray interpolation from 24-bit RGB to floating 
point CIELab (b. plotted). 

 
Since trilinear interpolation appears to offer few if any 

advantages over tetrahedral for model-based LUTs and has 
dual disadvantages of consistently higher memory access 
requirements and inferior rendition of near-neutral colors 
from RGB,3 we will focus on comparisons of more similar 
tetrahedral and binary dither interpolations. 

Tetrahedral interpolation uses no more than 4 points 
and can yield better results along diagonals, but involves 
some complications in determining which tetrahedrons 
contain points to be interpolated. 

Binary Dither Interpolation (BDI), as described here, 
performs another kind of linear interpolation. The number 
of BDI LUT accesses per conversion is related to the 
precision of interpolation, rather than data space 
dimensionality. For example, interpolation to 4-bit precision 
requires no more than 5 LUT entries for 3 or more 
dimensions. Two implementations, neighborhood mask 
dither and cached BDI, are constrained to no more than one 
LUT access for each conversion. 

3. Example of Tetrahedral and  
BDI Calculations 

Consider 24-bit RGB color {0xC8, 0x64, 0x96}. For a 173 
lookup table T the high 4-bit nibbles of the input determine 
the sub-cube for this interpolation; in this case the origin is 
TC,6,9 and the other end of the major axis is TD,7,A (Figure 3). 
The low 4-bit nibbles (8, 4, 6) are fractions within this sub-
cube. 

The resulting tetrahedral weights1 are 4, 2, 2, and 8. The 
largest fraction is for red, so the axis is to TD,6,9. The median 

fraction is for blue, so the minor diagonal is to TD,6,A. 
Therefore the tetrahedral calculation is: 

 (4TD,7,A + 2TD,6,A + 2TD,6,9 + 8TC,6,9)/16. 

The same color with binary fractions can be 
interpolated by BDI. Enumerated bit weights sum to 15/16 
and origin is always included with a weight of 1/16. For 
each significant weight, the corresponding bit is added to 
the corresponding component of the origin. Thus the BDI 
calculation is: 

 (8TD,6,9 + 4TC,7,A + 2TC,6,A + TC,6,9 + TC,6,9)/16. 

 

Figure 3. Example of tetrahedral interpolation. 

 
The following table summarizes BDI processing for 

this example: BDI truncated BDI LUT weights inputs 
vertices 
 

Truncated inputs DBI 
weights 8 4 6 

BDI LUT 
vertices 

8 1 0 0 TD,6,9 
4 0 1 1 TC,7,A 
2 0 0 1 TC,6,A 
1 0 0 0 TC,6,9 

 

4. Single LUT Access Per Pixel 

A well-known strategy for minimizing accesses to data in 
slow bulk storage is by use of a smaller high-speed cache. 
Cache implementation can be more complicated than the 
interpolation which it is intended to support. We have found 
a cache of 8 recently used LUT entries suffices to reduce 
artifacts. For a cache miss, it is desirable to first obtain the 
LUT entry which has the highest weight in the fully 
interpolated output. BDI weights are implicitly ordered, and 
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its highest weight is at least 8/16. Tetrahedral interpolation 
will require an additional sort of weights to prioritize LUT 
entries. Although tetrahedral interpolation has fewer cache 
misses on average than BDI, tetrahedral interpolation also 
has a higher worst case error when interpolating an identity 
4 bit LUT, because the highest weight may be only 5/16. 
For single clock cycle execution, a simple hardware cache 
may need to employ a suboptimal strategy, such as 
preselecting a cache entry to be replaced before determining 
whether that entry may be used for the current pixel. 
Examples of color errors from LUT cache misses are shown 
in Figure 7. Since the relatively small color differences may 
not be apparent in print, we present difference images with 
differences multiplied by 16. 

For this example, BDI reported 44 instances of LUT 
entries wanted but unavailable, since the number of LUT 
accesses is restricted to no more than one per pixel. 
Tetrahedral reported 25 cache misses. The largest color 
primary differences were 7/255 for BDI and 9/255 for 
tetrahedral, both in red. Largest of average absolute pixel 
color differences was 0.63/255 in red for BDI and 0.60/255 
in blue for tetrahedral. Eliminating cache misses reduced 
BDI average absolute difference to 0.15/255 in blue. 

BDI can also be implemented as a neighborhood dither, 
constrained to a single LUT access per pixel, by use of a 
following spatial bitmask: 

  

8 2 8 4

4 8 0 8

8 4 8 2

1 8 4 8

 

 

 
 
 
 
  

 

 

 
 
 
 
  

 

Neighborhood mask dither interpolation should be 
considered a spatial sampling process, to the extent that 
aliasing artifacts may be generated if used in conjunction 
with other sampling processes, such as halftoning by 
threshold array. Conversely, perturbation of colorant values 
by binary dither interpolation appreciably reduces the 
severity of “worm” artifacts generated by some error 
diffusion halftone algorithms. No dither occurs when 
truncated input bits are all zero, since conversion is exact. 
Results to date with neighborhood BDI followed by error 
diffusion have been very promising. At low resolution, 
dither of individual pixels is evident (Figure 6). 

5. Conclusions 

Mask dither color interpolation has been shown to work 
well in conjunction with error diffusion halftoning for inkjet 
printing at 600 dpi, causing no discernible artifact 
exacerbation and significantly reducing processing time for 

software based interpolation (about 30% reduction for a 
prototype filter to read, color convert, error diffuse and 
format an image for host-based inkjet printing). It also has 
applications in other control and data conversion processes 
that involve repetitive sampling when convergence to mean 
value is required only for local intervals. 

Practical embedded applications include color 
conversions for error diffused printing and nonlinear color 
video displays. A neighborhood mask dither implemented in 
fewer than 100 gates for 3-dimensional 4-bit truncation will 
be eight times faster than uncached trilinear and four times 
faster than tetrahedral interpolation, where each is throttled 
by memory access speed for LUT entries. Cached 
implementations of tetrahedral interpolation can be 
competitive in speed but with considerably increased ASIC 
complexity and larger worst case errors. 

Tetrahedral interpolation typically shows smaller 
average differences than BDI for RGB images converted 
with identity LUT. This may not generalize to nonidentity 
LUTs, and results with BDI are considered to have 
competitive quality on print samples evaluated to date. Note 
that neighborhood mask dither interpolated image of leaves 
Figure 8 may show moire patterns, depending upon how it 
is printed in the proceedings. Similar effects are to be 
expected with other dither interpolations.4 
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for (c = 0; c < numcolors; c++)
colorant[c] = 0; /* interpolate within unit cube of lut */

k = 16; /* k is dither mask */
do {

k = k / 2; /* k = 0 on the 5th iteration */
for (c = 0; c < 3; c++) {

cmy[c] = 255 - rgb[c];
if (k & cmy[c])

cmy[c] = cmy[c]/16 + 1;
else

cmy[c] = cmy[c]/16;
}
if (k > 0)

k1 = k;
else

k1 = 1; /* non-zero weight for k */
for (c = 0; c < numcolors; c++)

colorant[c] += k1 * lut[cmy[0]][cmy[1]][cmy[2]][c]]; /* lut access */
} while (k);

for (c = 0; c < numcolors; c++)
colorant[c] = (colorant[c] + 8) / 16;

Figure 4: Pseudo-code for BDI conversion of RGB to CMYK.

/* rank the four LSBs of each tristimulus input component */
for (c = 0; c < 3; c++)

cmy[c] = 0x0F & (255 - rgb[c]);

if (cmy[0] < cmy[1])
axis = 1;

else
axis = 0;

minor = 1 - axis;
if (cmy[axis] < cmy[2])

axis = 2;
/* cmy[axis] is now >= other components */
major = 3 - (minor + axis);
if (cmy[minor] < cmy[major]) {

minor = major;
major = 3 - (minor + axis);

}
/* cmy[major] is now <= other components */
for (c = 0; c < 3; c++) {

cmy[c] = (255 - rgb[c]) / 16; /* tetrahedron origin by truncation */
if (axis == c)

cmyaxis[c] = cmy[c] + 1; /* axis vertex */
else

cmyaxis[c] = cmy[c];
if (major != c)

cmyminor[c] = cmy[c] + 1; /* minor diagonal vertex */
else

cmyminor[c] = cmy[c];
}
wmajor = cmy[major]; /* major diagonal (neutral) weight */
wminor = cmy[minor] - cmy[major]; /* minor (rgb) diagonal weight */
waxis = cmy[axis] - cmy[minor]; /* axis (cmy) weight */
worigin = 16 - cmy[axis]; /* origin weight */
for (c = 0; c < numcolors; c++) {

x = wmajor * lut[cmy[0] + 1 ][cmy[1] + 1 ][cmy[2] + 1 ][c];
x += wminor * lut[cmyminor[0]][cmyminor[1]][cmyminor[2]][c];
x += waxis * lut[cmyaxis[0] ][cmyaxis[1] ][cmyaxis[2] ][c];
x += worigin * lut[cmy[0] ][cmy[1] ][cmy[2] ][c];
colorant[c] = (x + 8) / 16;

}

Figure 5. Pseudo-code for tetrahedral interpolation from RGB to CMYK.
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d.

Figure 6. Effects of caching on interpolation using 17 × 17× 17

identity 24-bit LUT: a. original 9 × 9 image; b. cached tetrahe-
dral; c. cached binary dither; and d. neighborhood binary dither.

a.

b.

c.

Figure 7. Effects of caching on interpolation using 17 × 17 ×
17 identity 24-bit LUT: exaggerated difference images between
the identity mapping and a. cached tetrahedral; b. cached binary
dither; and c. neighborhood binary dither.
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b.

c.

d.

Figure 8. Effects of caching on interpolation using 17 × 17× 17

identity 24-bit LUT: a. original natural image; b. cached tetrahe-
dral; c. cached binary dither; and d. neighborhood binary dither.

a.

b.

c.

Figure 9. Effects of caching on interpolation using 17 × 17 ×
17 identity 24-bit LUT: exaggerated difference images between
the identity mapping and a. cached tetrahedral; b. cached binary
dither; and c. neighborhood binary dither.
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