

Color Space Binary Dither Interpolation
Steven F. Weed and Tomasz J. Cholewo

Lexmark International, Inc., Lexington, Kentucky
e-mail: weed@lexmark.com

Abstract

Binary Dither Interpolation (BDI) is a linear interpolation
algorithm simpler and faster than other methods such as
tetrahedral interpolation. Conversion methods employing a
lookup table (LUT) process color values in three steps:
divide inputs into a table indices and fractions to be
interpolated, select LUT entries based on the indices, and
weight the selected entries based on the fractions.

In contrast to other more geometrically-based methods,
BDI generates a base index by truncation, then uses the
truncated fractions to conduct a binary search among
selected entries. In spite of having a very simple
neighborhood dither implementation, the perceived quality
of resulting images is comparable to that of more
conventional methods, particularly with constraints on
memory access. This paper describes some implementation
costs and image quality trade-offs among trilinear,
tetrahedral and binary dither interpolation for color space
conversion of digital images.

1. Introduction

Interpolation tables are often employed for color space
conversions.1 Historically, printing has been the
predominant application for interpolated color conversion,
but some recent color video display technologies (such as
LCDs) also require relatively complex color space
manipulations for good color fidelity. At the same time,
some color space representations allowing higher
information coding density than RGB involve conversions
that are relatively expensive to be performed in real time.
Digital processing costs continue to decrease, but simpler
and faster color conversion methods with good quality
could accelerate the acceptance of advanced color devices
and interchange representations.2

Precise relationships between perceived colors and
control signals for devices such as printers typically defy
terse analytical definition and also change over time. LUTs
are applicable when the relationships can be usefully
approximated as linear between adjacent table entries. For
modern digital processing, the speed of interpolation can be
constrained by the time to access LUT entries stored in
random access memory. Faster memory will enable higher
pixel conversion rates, but methods which require fewer
accesses allow the use of slower and lower cost memory.
Lowest cost embedded methods can avoid a requirement for

general purpose or digital signal processor cores by
employing only operations which can be economically
implemented in ASIC and FPGA chips instead of general
purpose processors. Algorithms based upon relatively few
primitive logic functions, such as AND, OR, XOR, bit
shifts, unsigned integer ADD and subtract, with minimal
requirements for access to bulk random access memory
(RAM), are preferable to those requiring frequent RAM
access or more general arithmetic logic.

Recent progress in spectral-based and principal
component image representations present additional
challenges for geometrically-based color space
interpolations. For example, n-linear interpolation among
six components requires access to 64 LUT entries per
conversion, while the six-dimensional simplex interpolation
involves a somewhat cumbersome task of selecting the
correct set of seven from 64 LUT entries.

Color information is often represented by three 8-bit
bytes, one for each tristimulus channel. Since humans can
visually discern roughly 100 increments along each
tristimulus axis, quantizing to more than twice that precision
supports the illusion of continuously varying colors.
Converting from a 24 bit color space encoding can be
accomplished by a lookup table (LUT) with 224 entries.
However, RAM storage for 50 megabyte tables is still
considered expensive. Many color spaces are defined with
explicit and separable algebraic conversions. However,
these conversions often involve mathematical functions for
which sufficiently fast and accurate digital implementations
remain too costly for widespread deployment. A lookup
table with integer interpolation remains a viable option.

Sparse tables have long been used for characterizing
relatively complicated numeric relationships. Uniform
spacing simplifies tables implementation, and table size is
determined by the desired range and accuracy of results.
Linear interpolation can be applied provided relationships
are sufficiently linear among nearest table entries. Cubic
splines could be applied to improve interpolation accuracy
with sparser tables, but 32 LUT accesses are required for a
3-dimensional cubic spline interpolation, and the time for
each LUT access becomes a limiting consideration in digital
implementations. For a number of tristimulus color spaces,
including sRGB and CIELab, 17 × 17 × 17 color LUTs are
common. Starting with 8 bits for each tristimulus value, an
interpolation unit cube is selected by truncating each value
to its 4 most significant bits.

IS&T/SID Tenth Color Imaging Conference

183

Special precautions have to be taken in last input
interval when using bytes for table values as well as indices.
There are two basic methods to special case the final table
intervals for byte indices and byte table values: (1)
recognize final intervals as one unit shorter than others; (2)
rescale final table entries. However, rescaling in general
requires table values outside the range of possible byte
values. In closed systems, integer interpolation may be
employed without special treatment for the last interval by
appropriate compensations in other processing, such as
halftone threshold array values.

Implementing an interpolation using only non-negative
integers is attractive for speed and cost considerations and
seems reasonable, given inputs, outputs and LUT of
constrained integer precision. At the same time, avoiding
division by other than powers-of-two (which can be
accomplished by shifts) also helps minimize
cost/performance. Round-off errors are a consideration in
integer processing. Given that in practice the difference
between 0 and 1 is often more important than the difference
between 254 and 255, it is generally appropriate to arrange
LUTs so that small values are concentrated near the origin.
For XYZ and RGB, this may involve inverting inputs when
outputs will be in a subtractive color space.

2. Linear Interpolation Algorithms

Digital table interpolation proceeds by selecting a nearest
set of table entries. For example, consider a 2-D table T
representing a function of arguments X and Y. Values X
and Y are converted to grid indices x, y and fractions 0 • a,
b • 1, respectively.

Two-dimensional n-linear interpolation (bilinear
interpolation) calculates

f(X, Y) = (1 – a)(1 – b)Tx,y + a(1 – b)Tx+1,y +
 b(1 – a)Tx,y+1

 + abTx+1,y+1
.

Two-dimensional simplex interpolation (triangular
interpolation) uses only three vertices of the lookup table
surrounding the interpolated point. If a > b:

f(X, Y) = (1 – a)Tx,y + (a – b)Tx+1,y + bTx+1,y+1
,

else, for a • b:
f(X, Y) = (1 – b)Tx,y + (b – a)Tx,y+1

 + aTx+1,y+1
.

While triangular interpolation considers numeric rank

among fractions, BDI considers bit combinations of equal
significance in fractions, assigning weights according to
significance. A 4-bit two-dimensional BDI calculates:

 f(X, Y) = (8 + 8Tx+(8&a)/8, y+(8&b)/8

 + 4Tx+(4&a)/4, y+(4&b)/4
 + 2Tx+(2&a)/2, y+(2&b)/2
 + Tx+(1&a),y+(1&b)
 + Tx,y)/16

where ’&’ represents bit-wise logical AND.

The above equations can be generalized to higher
dimensions. For this paper our focus is on three-
dimensional interpolation for color conversion.

Figure 1. Noisy gray interpolation from 24-bit CIELab to floating
point RGB (R - G plotted).

Ranking fractions for simplex interpolation becomes

increasingly expensive for higher dimensions, while BDI
masks fraction bits of equal significance from additional
fractions to select which table entry is assigned a powerof-
two weight. Ranking fractions will minimize the table
entries accesses for dimensions less than the number of bits
of precision in the fractions. Being fundamentally algebraic,
albeit with some iterations for selection and ranking,
tetrahedral interpolation is readily described by algebraic
expression, as above. BDI is a substantially binary
procedure, more readily described by pseudo-code.
Comparable integer pseudo-codes for BDI and tetrahedral
interpolation, both interpolating for the four least significant
bits of 24-bit RGB, are shown in Figures 4 and 5.

Like simplex interpolation, BDI can access fewer LUT
entries than n-linear interpolation. As with simplex, the
number of LUT entries which BDI accesses is input data
dependent. For example, truncated 4-bit tristimulus
fractions 0100,0100,0100 will only access two of eight
nearest table entries: [0,0,0] and [1,1,1]. Simplex
interpolation and binary dither are less robust than n-linear
to noise in sparse table entries. Specifically, as fewer table
entries are used for each color space conversion, model-
based LUTs are more likely to give smooth results than
tables inverted from data measurements by numerical
methods. LUT generation is relatively infrequent in
comparison to LUT usage, so using more sophisticated
processing to improve the quality of frequently used LUTs
seems an easy trade-off.

Trilinear conversion is often used for tristimulus
spaces, but requires access to eight lookup table (LUT)
entries for each conversion. Tetrahedral and BDI are at a
disadvantage when interpolating neutrals from a space such
as CIELab, where neutrals lie along an axis (Figure 1). On

IS&T/SID Tenth Color Imaging Conference

184

the other hand, Figure 2 shows errors of noisy gray
interpolation from 24-bit RGB to floating point CIELab.
Trilinear can generate anomalous results, for example when
calculating near-neutral values along diagonals in RGB-like
spaces.

Figure 2. Noisy gray interpolation from 24-bit RGB to floating
point CIELab (b. plotted).

Since trilinear interpolation appears to offer few if any

advantages over tetrahedral for model-based LUTs and has
dual disadvantages of consistently higher memory access
requirements and inferior rendition of near-neutral colors
from RGB,3 we will focus on comparisons of more similar
tetrahedral and binary dither interpolations.

Tetrahedral interpolation uses no more than 4 points
and can yield better results along diagonals, but involves
some complications in determining which tetrahedrons
contain points to be interpolated.

Binary Dither Interpolation (BDI), as described here,
performs another kind of linear interpolation. The number
of BDI LUT accesses per conversion is related to the
precision of interpolation, rather than data space
dimensionality. For example, interpolation to 4-bit precision
requires no more than 5 LUT entries for 3 or more
dimensions. Two implementations, neighborhood mask
dither and cached BDI, are constrained to no more than one
LUT access for each conversion.

3. Example of Tetrahedral and
BDI Calculations

Consider 24-bit RGB color {0xC8, 0x64, 0x96}. For a 173
lookup table T the high 4-bit nibbles of the input determine
the sub-cube for this interpolation; in this case the origin is
TC,6,9 and the other end of the major axis is TD,7,A (Figure 3).
The low 4-bit nibbles (8, 4, 6) are fractions within this sub-
cube.

The resulting tetrahedral weights1 are 4, 2, 2, and 8. The
largest fraction is for red, so the axis is to TD,6,9. The median

fraction is for blue, so the minor diagonal is to TD,6,A.
Therefore the tetrahedral calculation is:

 (4TD,7,A + 2TD,6,A + 2TD,6,9 + 8TC,6,9)/16.

The same color with binary fractions can be
interpolated by BDI. Enumerated bit weights sum to 15/16
and origin is always included with a weight of 1/16. For
each significant weight, the corresponding bit is added to
the corresponding component of the origin. Thus the BDI
calculation is:

 (8TD,6,9 + 4TC,7,A + 2TC,6,A + TC,6,9 + TC,6,9)/16.

Figure 3. Example of tetrahedral interpolation.

The following table summarizes BDI processing for

this example: BDI truncated BDI LUT weights inputs
vertices

Truncated inputs DBI
weights 8 4 6

BDI LUT
vertices

8 1 0 0 TD,6,9
4 0 1 1 TC,7,A
2 0 0 1 TC,6,A
1 0 0 0 TC,6,9

4. Single LUT Access Per Pixel

A well-known strategy for minimizing accesses to data in
slow bulk storage is by use of a smaller high-speed cache.
Cache implementation can be more complicated than the
interpolation which it is intended to support. We have found
a cache of 8 recently used LUT entries suffices to reduce
artifacts. For a cache miss, it is desirable to first obtain the
LUT entry which has the highest weight in the fully
interpolated output. BDI weights are implicitly ordered, and

IS&T/SID Tenth Color Imaging Conference

185

its highest weight is at least 8/16. Tetrahedral interpolation
will require an additional sort of weights to prioritize LUT
entries. Although tetrahedral interpolation has fewer cache
misses on average than BDI, tetrahedral interpolation also
has a higher worst case error when interpolating an identity
4 bit LUT, because the highest weight may be only 5/16.
For single clock cycle execution, a simple hardware cache
may need to employ a suboptimal strategy, such as
preselecting a cache entry to be replaced before determining
whether that entry may be used for the current pixel.
Examples of color errors from LUT cache misses are shown
in Figure 7. Since the relatively small color differences may
not be apparent in print, we present difference images with
differences multiplied by 16.

For this example, BDI reported 44 instances of LUT
entries wanted but unavailable, since the number of LUT
accesses is restricted to no more than one per pixel.
Tetrahedral reported 25 cache misses. The largest color
primary differences were 7/255 for BDI and 9/255 for
tetrahedral, both in red. Largest of average absolute pixel
color differences was 0.63/255 in red for BDI and 0.60/255
in blue for tetrahedral. Eliminating cache misses reduced
BDI average absolute difference to 0.15/255 in blue.

BDI can also be implemented as a neighborhood dither,
constrained to a single LUT access per pixel, by use of a
following spatial bitmask:

8 2 8 4

4 8 0 8

8 4 8 2

1 8 4 8









 









 

Neighborhood mask dither interpolation should be
considered a spatial sampling process, to the extent that
aliasing artifacts may be generated if used in conjunction
with other sampling processes, such as halftoning by
threshold array. Conversely, perturbation of colorant values
by binary dither interpolation appreciably reduces the
severity of “worm” artifacts generated by some error
diffusion halftone algorithms. No dither occurs when
truncated input bits are all zero, since conversion is exact.
Results to date with neighborhood BDI followed by error
diffusion have been very promising. At low resolution,
dither of individual pixels is evident (Figure 6).

5. Conclusions

Mask dither color interpolation has been shown to work
well in conjunction with error diffusion halftoning for inkjet
printing at 600 dpi, causing no discernible artifact
exacerbation and significantly reducing processing time for

software based interpolation (about 30% reduction for a
prototype filter to read, color convert, error diffuse and
format an image for host-based inkjet printing). It also has
applications in other control and data conversion processes
that involve repetitive sampling when convergence to mean
value is required only for local intervals.

Practical embedded applications include color
conversions for error diffused printing and nonlinear color
video displays. A neighborhood mask dither implemented in
fewer than 100 gates for 3-dimensional 4-bit truncation will
be eight times faster than uncached trilinear and four times
faster than tetrahedral interpolation, where each is throttled
by memory access speed for LUT entries. Cached
implementations of tetrahedral interpolation can be
competitive in speed but with considerably increased ASIC
complexity and larger worst case errors.

Tetrahedral interpolation typically shows smaller
average differences than BDI for RGB images converted
with identity LUT. This may not generalize to nonidentity
LUTs, and results with BDI are considered to have
competitive quality on print samples evaluated to date. Note
that neighborhood mask dither interpolated image of leaves
Figure 8 may show moire patterns, depending upon how it
is printed in the proceedings. Similar effects are to be
expected with other dither interpolations.4

6. References

1. H. R. Kang. Color technology for electronic imaging devices.
SPIE Optical Engineering Press, Bellingham, Wash., 1996.

2. R. Balasubramanian. Reducing the cost of lookup table based
color transformations. Journal of Imaging Science and
Technology, 44(4):321–327, July/August 2000.

3. K. Kanamori. A study on interpolation errors and ripple
artifacts of 3D lookup table method for nonlinear color
conversion. In Proceedings of SPIE, volume 3648, pages
167–178, San Jose, Calif., January 1999.

4. K. Spaulding. Method and apparatus employing mean
preserving spatial modulation for transforming a digital color
image signal. United States Patent No. 5,377,041, December
1994.

Biography

Steve Weed has worked for IBM, then Lexmark, since
1974. Since 1989, his primary research focus has been
algorithms and architecture for image processing. Steve
received his BSEE from Carlson College (now University)
in 1969 and a Masters in Engineering from the University of
Vermont in 1984.

IS&T/SID Tenth Color Imaging Conference

186

for (c = 0; c < numcolors; c++)
colorant[c] = 0; /* interpolate within unit cube of lut */

k = 16; /* k is dither mask */
do {

k = k / 2; /* k = 0 on the 5th iteration */
for (c = 0; c < 3; c++) {

cmy[c] = 255 - rgb[c];
if (k & cmy[c])

cmy[c] = cmy[c]/16 + 1;
else

cmy[c] = cmy[c]/16;
}
if (k > 0)

k1 = k;
else

k1 = 1; /* non-zero weight for k */
for (c = 0; c < numcolors; c++)

colorant[c] += k1 * lut[cmy[0]][cmy[1]][cmy[2]][c]]; /* lut access */
} while (k);

for (c = 0; c < numcolors; c++)
colorant[c] = (colorant[c] + 8) / 16;

Figure 4: Pseudo-code for BDI conversion of RGB to CMYK.

/* rank the four LSBs of each tristimulus input component */
for (c = 0; c < 3; c++)

cmy[c] = 0x0F & (255 - rgb[c]);

if (cmy[0] < cmy[1])
axis = 1;

else
axis = 0;

minor = 1 - axis;
if (cmy[axis] < cmy[2])

axis = 2;
/* cmy[axis] is now >= other components */
major = 3 - (minor + axis);
if (cmy[minor] < cmy[major]) {

minor = major;
major = 3 - (minor + axis);

}
/* cmy[major] is now <= other components */
for (c = 0; c < 3; c++) {

cmy[c] = (255 - rgb[c]) / 16; /* tetrahedron origin by truncation */
if (axis == c)

cmyaxis[c] = cmy[c] + 1; /* axis vertex */
else

cmyaxis[c] = cmy[c];
if (major != c)

cmyminor[c] = cmy[c] + 1; /* minor diagonal vertex */
else

cmyminor[c] = cmy[c];
}
wmajor = cmy[major]; /* major diagonal (neutral) weight */
wminor = cmy[minor] - cmy[major]; /* minor (rgb) diagonal weight */
waxis = cmy[axis] - cmy[minor]; /* axis (cmy) weight */
worigin = 16 - cmy[axis]; /* origin weight */
for (c = 0; c < numcolors; c++) {

x = wmajor * lut[cmy[0] + 1][cmy[1] + 1][cmy[2] + 1][c];
x += wminor * lut[cmyminor[0]][cmyminor[1]][cmyminor[2]][c];
x += waxis * lut[cmyaxis[0]][cmyaxis[1]][cmyaxis[2]][c];
x += worigin * lut[cmy[0]][cmy[1]][cmy[2]][c];
colorant[c] = (x + 8) / 16;

}

Figure 5. Pseudo-code for tetrahedral interpolation from RGB to CMYK.

IS&T/SID Tenth Color Imaging Conference

187

a.

b.

c.

d.

Figure 6. Effects of caching on interpolation using 17 × 17× 17

identity 24-bit LUT: a. original 9 × 9 image; b. cached tetrahe-
dral; c. cached binary dither; and d. neighborhood binary dither.

a.

b.

c.

Figure 7. Effects of caching on interpolation using 17 × 17 ×
17 identity 24-bit LUT: exaggerated difference images between
the identity mapping and a. cached tetrahedral; b. cached binary
dither; and c. neighborhood binary dither.

IS&T/SID Tenth Color Imaging Conference

188

a.

b.

c.

d.

Figure 8. Effects of caching on interpolation using 17 × 17× 17

identity 24-bit LUT: a. original natural image; b. cached tetrahe-
dral; c. cached binary dither; and d. neighborhood binary dither.

a.

b.

c.

Figure 9. Effects of caching on interpolation using 17 × 17 ×
17 identity 24-bit LUT: exaggerated difference images between
the identity mapping and a. cached tetrahedral; b. cached binary
dither; and c. neighborhood binary dither.

IS&T/SID Tenth Color Imaging Conference

189

