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Abstract 

In this paper, on the assumption of the Lambert-Beer model 
for subtractive color mixture, several theorems regarding 
the stimulus values of colors obtained by subtractive color 
mixture are proved. The results of this paper will contribute 
to a systematization of subtractive color mixture. 

Introduction 

In this paper, we discuss the characteristics of subtractive 
color mixture.1-5   

On the assumption of the Lambert-Beer model for 
subtractive color mixture, several theorems regarding the 
stimulus values of colors obtained by subtractive color 
mixture are proved. Generally, in subtractive color mixture, 
the resultant stimulus values are not uniquely determined 
from component stimulus values. Hence, analysis regarding 
the maximum and the minimum stimulus values are very 
important to understand the possible ranges of stimulus 
values of subtractive color mixture. On which parameter the 
maximum stimulus value of a subtractive color mixture 
depends? Which parameters can be related to illuminant 
coordinate decomposition? This paper provides theorems 
about these issues. There have not been studies about these 
issues before.  

The results of this paper will contribute to a 
systematization of subtractive color mixture. 

Subtractive Color Mixtureand Model 

Additive color mixture results from the mixture of colored 
light, while subtractive color mixture results from 
superimposing absorption media, such as coloring materials 
and color filters. In this paper, the Lambert-Beer model4 is 
assumed for the subtractive color mixture model. Denote 
the spectral transmittances for cyan (C), magenta (M), 
yellow (Y) dye as TC(λ), TM(λ), TY(λ), and the density for 
each primary as c, m, y, respectively. The spectral 

transmittance T(λ) for colorant layers of C, M, Y is modeled 
as follows: 

    

T λ( )= T C λ( ){ }c
TM λ( ){ }m

TY λ( ){ }y

= ρ1 (λ )ρ2 (λ)ρ3 (λ ),
   (1) 

where 

    

ρ1 λ( )= TC λ( ){ }c
,

ρ2 λ( )= TM λ( ){ }m
,

ρ3 λ( )= TY λ( ){ }y

0 ≤ ρ i λ( ) ≤ 1 i = 1,2, 3( ).

 

The tri-stimulus values (X, Y, Z) are calculated as follows: 

  

    

X = T λ( )S λ( )x λ( )d λ∫ ,

Y = T λ( )S λ( )y λ( )d λ∫ ,

Z= T λ( )S λ( )z λ( )d λ∫ ,

    (2) 

where S(λ): spectral power distribution of illuminant,  

    
x λ( ), y λ( ), z λ( ): color matching functions. 

Theoretical Analysis 

In this theoretical analysis, the ideal color model1 is 
assumed, and ρi(λ) (I = 1,2,…,n) take only 1 or 0 values. 
Hereafter, n(2 < n) colorants means a layer composed of n 
colorants. For the proof of general n(2 < n) colorants case, 
the mathematical induction is employed. First, the 
mathematical relation of n = 2 colorants case is proved, and 
after that n(2 < n) colorants case is proved under the 
assumption of the mathematical relation of the (n – 1) 
colorants case. 
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 [Notation] 

    
max X 1 , X 2 ,� , X n[ ] : maximum value among Xi(i = 1,2,…,n), 

    
min X 1 , X2 ,�, X n[ ]  : minimum value among Xi(i = 1,2,…,n), 

    
ρ i λ( )

i=1

n

∏ = ρ i λ( )
i=1

n

∏
 

 
  

 

 
  S λ( )x λ( )d λ∫ , 

    
ρ i λ( )

i=1

n

∏
max

= max
ρi i=1,2,�,n( )

ρi λ( )
i=1

n

∏
 

 
  

 

 
  S λ( )x λ( )dλ∫

 

 
 
 

 

 
 
  

: maximum value of 
    

ρi λ( )
i=1

n

∏
 

 
  

 

 
  S λ( )x λ( )dλ∫    

parameterized by ( )λρ
i

( )ni ,,2,1 �= , 

    
ρ i λ( )

i=1

n

∏
min

= min
ρi i=1,2,�,n( )

ρi λ( )
i=1

n

∏
 

 
  

 

 
  S λ( )x λ( )dλ∫

 

 
 
 

 

 
 
   

: minimum value of 
    

ρi λ( )
i=1

n

∏
 

 
  

 

 
  S λ( )x λ( )dλ∫            

parameterized by   ρi λ( )    i = 1, 2,� , n( ) , 

where 

( )λρ
i

 ( )ni ,,2,1 �=  for ( )
max1

∏
=

n

i
i λρ and ( )λρ

i
 

( )ni ,,2,1 �=  for ( )
min1

∏
=

n

i
i λρ are optimized  

independently. 

[Definition] 

Stimulus Values 
Define a stimulus value for each colorant layer as 

follows: 

    
X i = ρi λ( ) i = 1,2,�, n( ).    (3) 

Equation (3) is the defining constraint of the whole 
problem, and Xi (i = 1,2,…,n), are inputs that define the 
constraint.  

Relations in the Spectral Transmittance of n Colorants 
• Included relation in the transmittance of n colorants 

The included relations of transparent bands are defined 
as the cases that a wavelength region of ρ = 1 of a colorant 
is included in wavelength regions of ρ = 1 of other 
colorants larger than the region, as shown in Figure 1 as an 
example. Figure 1 shows the transmittance composed by n 
colorants and the index i  (1 < i < n) region of ρ = 1 is 
included by the smaller index number of regions of ρ = 1. 
The solid lines indicate the results of the superimposing the 
colorants. 

�

���

�

���

��� ��� ��� �	

�

i =  n��� i =  2 i =  1

 

Figure 1. Example of included relations. 

 
• Separated relation in the transmittance of n colorants 

The separated relations of absorption bands are defined 
as the cases that a wavelength region of ρ = 0 of a colorant 
is separated with wavelength regions of ρ = 0 of other 
colorants as shown in Figure 2 as an example. Figure 2 
shows the transmittance composed by n colorants, and the 
absorption band i (i = 1,2,…,n) corresponds to the 
absorption band for each colorant i (i = 1,2,…,n).. The solid 
lines indicate the results of the superimposing the colorants. 

The same relations consist for combinations of various 
types of the ideal color model other than the examples 
shown in Figure 1 and Figure 2. 

 

�

���

�

���

��� ��� ��� �	

�

i  =  ni  =  2i  =  1 ���

��

 

 Figure 2. Example of separated relations. 
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[A priori Condition] 
Spectral power distribution of illuminant S(λ) and 

color matching functions     
x λ( ), y λ( ), z λ( ) are fixed. The 

values of Xi(i = 1,2,…,n) are given a priori. The priori 
conditions are used for theorems following. 

Theorems 1, 2 are about which parameters the 
maximum stimulus value of a subtractive color mixture 
corresponds. Theorems 1, 2 are useful to determine the 
maximum stimulus value of subtractive color mixture under 
the assumption that the stimulus value of each colorant is a 
priori given. 

Theorem 1 is for n = 2 colorants case, and theorem 2 is 
for the mathematical relation of n (2 < n) colorants case 
under the assumption of the mathematical relation of (n – 1) 
colorants case. 

[Theorem 1] 
For a priori given X1,X2, the following mathematical 

relation is valid: 

( ) ( ) ],min[
21max21

XX=λρλρ .   (4) 

Proof 
Consider the Case of X1 < X2. 

The left side of Eq.(4) is maximized when ρ1(λ) is 
included in ρ2(λ) (included relation of transparent band) on 
the reason that ρ1(λ)•ρ2(λ) takes the maximum ratio value 
of 1 in the wavelength range. Since in this case ρ1(λ)•ρ2(λ) 
= ρ1(λ) and solving the left side of Eq.(4) we have the right 
side of Eq.(4). The included relation always exists for any 
values of X1,X2, because ρ1(λ) can exists as a part of ρ2(λ) in 
the case of X1 < X2. 

In the case of X1 < X2, the proof is provided in the same 
way. 

[Theorem 2] 
For a priori given X1,X2,…,Xn, the following 

mathematical relation is valid for n  colorants layer : 

( ) ],,min[
21

max1
n

n

i
i XXX �=∏

=
λρ .   (5) 

Proof 
By using the notation of 

ρ1 λ( )ρ2 λ( )�ρ n−1 λ( )= ρn−1
* λ( ) ,  min X1 , X2 ,�,Xn−1[ ]= Xn−1

*
 

and from this theorem for (n – 1) colorants, the following 
relation is derived: 

  ( ) [ ]
121max1

*

1
,,,min −

∗
−− == nnn

XXXX �λρ .    (6) 

Based on Eq.(6) and theorem 1, the following relation 
is derived,  

ρi λ( )
i=1

n

∏
max

= ρ n−1
∗ λ( )ρ n λ( )

max
= min Xn−1

* ,Xn[ ]
= min X1, X2 ,�,Xn[ ] .

 (7) 

The theorem is proved. 
Mathematical induction based on theorem1 and 

theorem 2 proves the general case of n≤2 . 
Theorems 3, 4 are about which parameters can be 

related to illuminant coordinate decomposition in 
subtractive color mixture. Theorems 3, 4 are useful to 
understand the components of an illuminant, under the 
assumption that the stimulus value of each colorant is a 
priori given. 

[Theorem 3] 
X0 indicates just the illuminant X value. 
  If X0 < X1 + X2, then 

0
X  is represented as follows: 

  X0 = X1 + X2 − ρ1 λ( )ρ2 λ( )
min

.       (8) 

Proof 
The assumption of X0 < X1 + X2 is explained. On the 

condition of X0 = X1 + X2, there exist ρ1(λ), ρ2(λ) whose 
transparent bands completely fill up all the wavelength 
range by the combinations without overlapping and satisfies 
X0 = X1 + X2. Starting from ρ1(λ), ρ2(λ) satisfying X0 = X1 + 
X2, consider the case of X0 < X1 + X2. On the condition of X0 
< X1 + X2, absorption bands of ρ1(λ), ρ2(λ) should be 
decreased for the increase of X1 + X2, and the absorption 
bands can be separated each other in ρ1(λ)ρ2(λ), because, 
there can exist slates of ρ1(λ)=1, ρ2(λ)=1 at adjacent 
boundary by adequate decrements of each absorption band 
width.  

As explained above, the assumption of X0 < X1 + X2 
corresponds to that there exist ρ1(λ) and ρ2(λ) whose 
absorption bands are separated in ρ1(λ)ρ2(λ) for given 
values of X0, X1, X2. 

A separated relation between ρ1(λ) absorption bands 
(where ρ1(λ)=0) and ρ2(λ) absorption bands (where 
ρ2(λ)=0) minimizes < ρ1(λ)ρ2(λ)>in Eq.(8), because 
ρ1(λ)•ρ2(λ) takes the maximum ratio of 0 value in the 
wavelength range for given X1 and X2. The assumption of X0 
< X1 + X2 enables the separated relation between ρ1(λ) 
absorption bands and ρ2(λ) absorption bands. Using these 
relations, the following equation is derived : 

    

X 1 + X 2 − ρ1 λ ρ2 λ( )
min

= (X 0 − (absorption by ρ 1 (λ)))

+ (X0 − (absorption by ρ 2 (λ)))

− (X0 − (absorption by ρ 1(λ ) and ρ1 (λ)))
= X 0 ,

   (9) 

where 
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(absorption by ρi(λ)): X value absorbed by ρ1(λ) (i = 1 or 2). 

(absorption by ρ1(λ) and ρ2(λ)):X value absorbed by ρ1(λ) (i=1,2), 

(absorption by ρ1(λ) and ρ2(λ)) 

=(absorption by ρ1(λ))+(absorption by ρ2(λ)), under the separated 

relation. 

 
The theorem is proved. 

[Theorem 4] 

If 
    
n − 1( )X 0 < X i

i=1

n

∑ , then 
0

X  is represented as follows: 

    

X 0 = X i
i=1

n

∑ − ρi λ( )
i=1

n

∏
min

 

 
 
 

 

 
 
 / n − 1( ).   (10) 

Proof 
The assumption of 

n − 1( )X0 < Xi
i=1

n

∑  

is explained. The explanation is the extension of the 
explanation of Theorem 3 on the same theoretical 
framework. On the condition of 

n − 1( )X0 = Xi
i=1

n

∑  

there exist ρ1(λ),ρ2(λ),…,ρn(λ) whose transparent bands 
completely fill up all the wavelength range (n – 1) times by 
the combinations without overlapping and satisfies 

n − 1( )X0 = Xi
i=1

n

∑ . 

Starting from ρ1(λ),ρ2(λ),…,ρn(λ) satisfying the relation of 

n − 1( )X0 = Xi
i=1

n

∑ ,  

consider the case of 

n −1( )X0 < Xi
i=1

n

∑ .  

On the condition, absorption bands of ρ1(λ),ρ2(λ),…,ρn(λ) 
should be decreased for the increase of 

Xi
i=1

n

∑ , 

and the absorption bands can be separated each other in 
ρ1(λ)ρ2(λ)…ρn(λ), because, there can exist slates of ρ1(λ) = 
1, ρ2(λ) = 1, …,ρn(λ)=1 at adjacent boundary by adequate 
decrements of each absorption band width. 

As explained above, the assumption of 

n − 1( )X0 < Xi
i=1

n

∑  

corresponds to that there exist ρ1(λ),ρ2(λ),…,ρn(λ) whose 
absorption bands are separated in ρ1(λ)ρ2(λ)…ρn(λ) for 
given values of X0, X1,…,Xn. For the same 
ρ1(λ),ρ2(λ),…,ρn(λ), the absorption bands between ρn(λ) 
and 

 ( )λρ∏
−

=

1

1

n

i
i  

are also separated that under the assumption there exist 
ρn(λ) and  

( )λρ∏
−

=

1

1

n

i
i

 

whose absorption bands are separated. 
  Assume that Eq.(10) is valid for (n – 1) colorants, 

Eq.(10) for (n – 1) colorants is converted as follows: 

    

n − 2( )X0 = X i
i=1

n −1

∑ − ρi λ( )
i =1

n−1

∏
min

 

 
 
 

 

 
 
 .       (11) 

The minimization of 

( )∏
=

n

i
i

1

λρ  

is attained when ρn(λ) is separated from 

( )λρ∏
−

=

1

1

n

i
i  

(separated relation of absorption bands). The separation is 
assured from the assumption. On the separation, the relation 
of 

    

ρi λ( )
i= 1

n −1

∏
min

− absorption by ρn( )
 

 
 
 

 

 
 
 

    
= ρi λ( )

i= 1

n

∏
min

  

is valid. And the subtraction X0-(absorption by ρn(λ)) 
corresponds to Xn that the following equation is derived 
using Eq.(11): 

    

n − 1( )X 0 = X 0 + Xi
i=1

n −1

∑ − ρi λ( )
i=1

n − 1

∏
 

 
 
 

 

 
 
 

min
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= X 0 − absorption by ρn λ( )( )( )+ X i

i=1

n −1

∑  

    

− ρi λ( )
i=1

n −1

∏ − absorption by ρn λ( )( )
 

 
 
 

 

 
 
   

   
    

= X i
i=1

n

∑ − ρ i λ( )
i= 1

n

∏
min

.    (12)  

In Eq. (12), an addition and a corresponding 
subtraction of the (absorption by ρ1(λ)) terms whose 
summation equals to 0.0  are included in the second 
equation from the deformation of the first equation and the 
final form of Eq.(12) is derived. Dividing the both side of 
Eq.(12) by n – 1, the equation for n colorants layer is 
derived as follows: 

 

    

X 0 = X i − ρi λ( )
i=1

n

∏
mini=1

n

∑
 

 
 
 

 

 
 
 / n − 1( ) .   (13) 

Mathematical induction based on theorem 3 and 
theorem 4 proves the general case of 2 < n. 

In theorems 1-4, the relation about the X stimulus 
values are proved. The same relation for Y, Z stimulus 
values are proved in the same way. 

Conclusions 

In this paper, we have discussed about the characteristics of 
subtractive color mixture. Analysis regarding the maximum 
and the minimum stimulus values are very important to 
understand the possible ranges of stimulus values of 
subtractive color mixture.  

The results of this paper will contribute to a 
systematization of subtractive color mixture. In this paper, 
characteristics along a single axis of tristimulus values were 
discussed. Hereafter, characteristics along three 
dimensional directions in the tristimulus space will be 
discussed. 
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