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Abstract 

‘Standard Object Colour Spectra Database for Colour 
Reproduction Evaluation (SOCS)’, which contains about 
50,000 object color reflectances/transmittances, was 
published as a Japanese Industrial Standard Technical 
Report (JIS-TR) in 19981. To promote, widen and 
standardize usage of SOCS, we selected representative data 
sets, including both typical sets and difference sets. Typical 
set samples have average characteristics of whole data in an 
object group, and difference set samples have metameric 
characteristics to corresponding typical set samples, 
respectively. This paper describes concepts, purposes and 
algorithms by which they were selected from many spectral 
data samples. 

A total of 365 representative data samples (235 samples 
for typical sets and 130 samples for difference sets) were 
selected and evaluated to determine whether they meet the 
purposes for the sets. An experiment verified that they are 
very useful in the following applications. 
(a) Determination of simple color correction matrix using 

typical sets. 
(b) Easy evaluation of color reproduction quality for color 

sensors by a combinatorial use of typical and difference 
sets. 
 
ISO/TC130/WG2 is discussing SOCS as a new ISO 

technical report. The above-mentioned representative data 
sets will be the principal part of the technical report. 

Introduction 

‘Standard Object Colour Spectra Database for Colour 
Reproduction Evaluation (SOCS)’ was prepared and 
published as a Japanese Industrial Standard Technical 
Report (JIS-TR) in 19981. SOCS includes 49,672 object 
spectral reflectance/transmittance data, which were 
classified according to object categories. After the 
publication, data for other categories were added, and the 
current number of collected data is summarized in Table 1. 
Each data is 31-dimensional spectral reflectance or 
transmittance. 

Though they are very valuable data even in the current 
form, the number of data is very large, and their distribution 
is biased toward some categories. Though many data are 
desirable to statistically evaluate the quality of color image 
input devices, careful data arrangement is necessary for 
meaningful use, and a smaller data set for easily evaluating 
the quality of color image input devices was hoped. We 
therefore decided to select only several hundreds of 
representative spectral data for use instead of the full data 
set. This paper describes the selection procedure and 
usefulness of the selected data. The selected data will be the 
principal part of an ISO technical report to be published in 
the near future. 

Table 1. Number of Spectral Data Collected for SOCS. 
Category No. of sub-

categories 
No. of 
colors 

Photographic materials 
(Transparencies/Reflection prints): 

8 2,304 

Graphic printing (Offset/Gravure) 33 30,624 
Color computer printers 21 7,856 
Paint (for exterior/interior objects)  336 
Paints (for art) 4 229 
Textiles 6 2,832 
Flowers  148 
Leaves  92 
Human skin  8,570 
Krinov data (natural objects)  370 
Total  53,361 

Typical Sets and Difference Sets 

Color device developers can simulate color reproduction of 
image input devices using SOCS, when they have 
knowledge on spectral properties of optical components 
used in the device. Such simulation has two important roles. 
(a) To ascertain necessary color correction for input color 

values. 
(b) To analyze residual errors which remain even after the 

above color correction is applied. 
 

As a typical example of color correction, a linear model 
is assumed in this paper. In the model, equation (1) is 
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applied to obtain optimal tristimulus values X, Y and Z 
from sensor outputs R, G and B, where the matrix elements 
aij’s are determined so that the sum of squared error is 
minimized. Eq. (2) shows an example for determining a21, 
a22 and a23. 
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E y =

n =1

N

∑ Y0 n − a21 Rn − a22Gn − a23 Bn( )2
         (2) 

where a21 + a22  + a23 = 1. 
If a small number of data can be used for this 

minimization instead of whole data, the data set can be 
considered as a ‘typical set’ for the whole data. The typical 
set is one of the representative data sets. In practical 
applications, color difference in a uniform color space is 
often minimized, and such minimization may be applied for 
this typical set evaluation. However, as the objective of this 
work is to evaluate whether the typical data set has a 
characteristic similar to that of whole data set, and it is not 
important to obtain the best correction matrix, we used the 
simple linear model. The differences in this linear space 
also relates to differences in the spectral space, which is 
described in the next section. 

Metamers are a set of colors which look the same under 
an illumination condition, but have different spectral 
reflectances. If a set of colors sensors satisfies the Luther 
condition, sensor outputs for all metamers are equal. If the 
sensor spectral sensitivity does not satisfy the Luther 
condition and the quality of the sensors is low, they may 
look different even under the same illumination condition. 
Hence, output signal variation for metamers should be 
analyzed for quality evaluation. Though we can imagine an 
infinite variety of spectral reflectances, it is pointless to 
evaluate sensor outputs for extremely complicated 
metamers that do not exist in the real world; i.e., evaluation 
should be made based on real metamers. For the evaluation, 
we selected a difference set in which a member’s color is 
very similar to that of a typical set member, but whose 
member’s spectral characteristic is maximally different 
from that of a typical set member. The difference set is the 
other representative data set. 

Data were selected for both typical and difference sets. 
Table 2 shows data groups and numbers of spectral data in 
each group in these sets. For every group, a typical set was 
selected. Difference sets were selected mainly from artificial 
color groups. 

Typical Set Selection 

Artificial Color Groups 
Printers usually reproduce many colors, mixing three or 

four primary inks. Groups such as printers are called 
‘artificial color groups’ in this paper. For each group, a 
typical device was determined, and three achromatic colors 

and twelve chromatic colors produced by the device were 
selected in predetermined hue directions. 

 

Table 2. Numbers of Data Selected for Typical Sets and 
Difference Sets. 
 Groups Typical 

sets 
Difference 

sets 
Photo (transparency) 15 15 
Photo (reflection print) 15 15 
Offset prints 15 15 
Dye sublimation printer 15 15 
Electrostatic printer 15 15 
Ink-jet printer 15 15 

Artificial 
Colour 
Groups 

Textiles (synthetic dyes) 15 15 
Flowers/grasses/leaves 
(incl. Krinov’s grasses and 
leaves) 

25 25 

Paint (not for art) 15 - 
Oil paints 15 - 
Water colours 15 - 
Textiles (plant) 15 - 
Non-grass/leaf Krinov 15 - 
Bare North Asian skin 5 - 
FD-applied North Asian 
skin 

5 - 

Bare South Asian skin 5 - 
FD-applied South Asian 
skin 

5 - 

Bare Caucasian skin 5 - 

Natural 
Colour 
Groups 

Bare Negroid skin 5 - 
Total 365 

 
 
As the first step, fifteen basic colors whose L*a*b* 

values under the D65 illuminant were determined (Table 3). 
We determined twelve chromatic colors from the common 
color gamut of seven artificial color groups, regularly 
sampling hue angles. 

Next, a typical device is defined in a group. The typical 
device is the device that has average properties among 
multiple devices in the group. Typical set samples are 
extracted from the typical device. 

It is known that the optimal color correction matrix Aopt 
is equal to the product of the color matching function matrix 
χ and a spectrum restoration matrix (Eq.(3)), when color 
correction is carried out based on Eq.(1).2 

 

    

Aopt = χ t ⋅ S −

where χ = (x y z ) and S − = K βR K RR
−1 .

   (3) 

KβR:  mutual correlation matrix between spectral   
 reflectance/transmittance and R, G and B. 

KRR:: auto-correlation matrix relevant to R, G and B. 
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If there are N devices, N matrices (A1, …, AN) are 
obtained based on     (S 1

−,� , S N
− ),  respectively. It is obvious 

that   Sk
−  would be the optimal spectrum restoration matrix 

for spectra of colors that are output from the k-th device. 
However, the matrix is not necessarily appropriate for 
restoring spectra of colors that are output from other 
devices. The typical device kt is defined so that spectral 
reflectances in the group can be restored with the least 
squared errors, when −

�
��  is applied. 

A sample that shows the nearest L*, a* and b* values to 
a basic color among the typical device outputs under D65 
illuminant, is selected as a member of the typical set. 

Table 3. Fifteen Basic Colors. 
 L* H* C* 

1 20 - 0 
2 50 - 0 
3 80 - 0 
4 40 0 30 
5 45 30 35 
6 50 60 37 
7 60 90 45 
8 60 120 30 
9 45 150 30 

10 45 180 23 
11 45 210 22 
12 45 240 20 
13 40 270 20 
14 35 300 27 
15 40 330 30 

 

Skin Color Groups 
It is known that variations in skin color mainly depend 

on melanin and hemoglobin quantities.3,4 As an example, 
Table 4 shows the principal component analysis result for 
North-Asian skin color distribution in the L*a*b* space 
under D65. In most groups, the first principal component 
lies in the white – black (brown) direction, and the second 
lies in the yellow – blue or green – magenta direction. The 
former seems to correspond to the melanin quantity, and the 
latter seems to correspond to the hemoglobin quantity. The 
distribution is shown in Fig. 1. Based on the distribution, 
five typical set samples C0, C1, …, C4 were selected by the 
following procedure. 

 

Table 4. North-Asian Skin Color Distribution Under 
D65 

 Mean 1st  
principal 

component 

2nd 
principal 

component 

3rd  
principal 

component 
L* 64.7 0.895 0.017 0.445 
a* 10.1 -0.353 -0.584 0.731 
b* 18.7 -0.273 0.812 0.516 

Variance  13.97 5.71 1.31 

 

Figure 1. North-Asian skin color distribution. 

 
(a) The mean color: 
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      (4) 

(b) Two extreme colors along the first principal axis. 

    

C1 = C 0 + 2σ1 ⋅ λ1

C2 = C0 + 2σ 1 ⋅ λ       (5) 

(c) Two colors which lie in the perpendicular direction to 
C1 and C2 on the chromaticity plane with respect to the 
mean color, and have lightness differences with respect 
to other selected colors. 

    

C3 = C0 − (2σ 2 ⋅ λ 2 − 2σ3 ⋅ λ3 ) + σ1 ⋅ λ1

C 4 = C0 − (2σ 2 ⋅ λ2 − 2σ3 ⋅ λ3 ) −σ 1 ⋅ λ1

   (6) 

Natural Color Groups 
It is difficult to select typical color samples in natural 

color groups, since colors are not distributed in all hues and 
there are no rules for the distribution. Hence, we selected 
typical samples from the viewpoint that the data are 
distributed in the spectral vector space. Each sample data is 
a 31-dimensional vector, whose components are spectral 
reflectance values at 400nm, 410nm,  …, 700nm. We 
assume a regular 31-dimensional hyper-cubic lattice. Each 
data sample is contained in a hyper-cube. In this situation, 
we can count hyper-cubes that contain one or more data 
samples. If we would like 15 typical samples, the hyper-
lattice is resized so that exactly 15 hyper-cubes contain all 
data samples. This process is depicted in Fig. 2, where a 
two-dimensional vector space is used for simplicity, and 
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eight hyper-cubes contain sample data. If multiple data 
samples are contained in a hyper-cube, the sample nearest to 
the cube center is selected as a typical set sample. 

 

Figure 2. Typical sample selection for natural color groups. 

Difference Set Selection 

We wish to obtain a metamer corresponding to each typical 
sample as a difference set sample. However, as it is selected 
from measured spectral data in SOCS, no data sample can 
be found which has exactly the same L*, a* and b* values 
as the typical sample under, say, D65. Hence, we adopt data 
samples whose color differences from the typical sample are 
less than 5, with a small number of exceptions. Difference 
set samples are, therefore, pseudo-metamers. Selection steps 
are as follows. 
(a) Data samples whose color differences from the typical 

sample are less than 5 are extracted in the L*a*b* 
space. 

(b) A data sample i whose spectral difference D (Eq.(7)) 
from the typical sample is largest is selected as a 
difference set sample. 

    
D = (βiλ − β tλ )2

λ =400

700

∑     (7) 

where βiλ is spectral reflectance/transmittance at a 
wavelength ë of the i-th data sample, and βtλ is that of the 
typical data sample. 

Evaluation of  
Selected Representative Colors 

We evaluated the selected representative spectral data sets, 
based on the linear color correction model described in 
Eq.(1). Though non-linear color correction is often applied 
in practical cases, it is hard to select one typical method. In 
addition, a typical set or a difference set includes only about 
15 samples, and more samples are required for non-linear 
correction in many cases. It is well known that linear color 
correction is sufficient in many practical cases, too. 

Color reproduction error in a color image input device 
is calculated by Eq.(8), after X, Y and Z values are obtained 
from sensed R, G and B values using the linear color 
correction (Eq.(1)). 

    
E = X i − X i0( )2

+ Yi − Y i0( )2
+ Z i − Z i0( )2{ }

i
∑   (8) 

In this study, the following two sets of example sensors 
were used with D65 illuminant. 
(a) swrd65: Spectral transmittances of Kodak Wratten 

filters (No.29(Red), No.61(Green), No.47(Blue)) are 
integrated with spectral sensitivity of silicon photo-
diode. These filters were formerly used widely as color 
separation filters. This sensor is an example of a modest 
quality sensor, 

(b) ccdd65r: Spectral sensitivities of a digital camera CCD 
(RGB type). This is an example of a good quality 
sensor.  
Their integrated spectral sensitivities are shown in Fig. 

3. Discussions on quality of these sensor sets can be found 
in the reference.2 

 
(a) swrd65 

 
(b) ccdd65r 

Figure 3. Spectral sensitivities of sensors used for the experiment. 
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Evaluation of Typical Sets 
For each group in Table 2, we optimized two color 

correction matrices for swrd65, using (1) typical samples 
and (2) all samples, and applied the optimized matrices to 
all samples. Residual rms errors were calculated and are de 
picted in Fig.4. In most groups, the residual errors are about 
the same for both matrices, and this shows that typical set 
samples can generate a color correction matrix similar to 
that generated using all samples. As examples, matrices for 
photo (transparency) and skin are shown below. A' is the 
matrix based on the typical samples, and A0 is the matrix 
based on all samples. In this example, 30 typical set samples 
in six skin groups are used to generate a color correction 
matrix in comparison with all skin spectral samples. 
 
• Photo(transparency) 
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Figure 4. Residual rms errors after the linear color correction. (a) 
Photo (Reflection prints) (b) Electro-static printer (c) Textiles (d) 
Flowers, grasses & leaves 

Evaluation of Difference Sets 
As mentioned above, difference set samples are 

pseudometamers. They are used to evaluate the practical 
range of color reproduction errors caused by low-quality 
sensors that do not satisfy the Luther condition. The color of 
a difference set sample should be similar to that of its 
corresponding typical set sample. However, if the color is 
input by low-quality sensors, a large color difference can be 
anticipated. The framework of the evaluation is as follows. 

(1) Color difference in L*a*b* space between a typical set 
and its corresponding difference set is calculated under 
D65. The color difference is called ‘CD-A’. 

(2) RGB values sensed by a sensor set for typical set 
samples and difference set samples under D65 are 
calculated. 

(3) The RGB values are converted by a color correction 
matrix obtained based on the typical set, and color 
difference in L*a*b* space between a typical set and its 
corresponding difference set is calculated. The color 
difference is called ‘CD-B’. 

(4) If CD-A is about the same as CD-B, the sensor set is 
good. The larger the difference is, the worse the sensor 
quality is. 

 
We first applied the sensor set swrd65 to this 

evaluation, and analyzed the relation between CD-A and 
CD-B for each sample. Figure 5(a) shows the relation for 
photo (reflection prints), 5(b) for electro-static printer 
outputs, 5(c) for textiles, and 5(d) for flowers & grasses & 
leaves. We obtained a very interesting result in this 
experiment, i.e. the correlation between color differences 
was high in Figs. 5(a) and (b), but low in Figs. 5(c) and (d). 
In the case of textiles, several CD-Bs are three or four times 
larger than CD-A. However, we applied the sensor set 
ccdd65 to the evaluation, high correlation was obtained for 
textiles and for flowers & grasses & leaves as well (see 
Figs.6(a) and (b)). These results clearly show that when a 
high-quality sensor is used, CD-B behaves like CD-A. 

 

 
(a) Photo (Reflection prints) 

 
(b) Electro-static printers 

 
(c ) Textiles 

 
(d) Flowers, grasses & leaves 

Figure 5. Relation between CD-A and CD-B (swrd65) 
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Figure 6. Relation between CD-A and CD-B (ccdd65) 

 
This experiment shows that difference sets are very 

useful tools for sensor quality evaluation. The shown color 
differences are especially useful, since the samples are 
spectral reflectances/transmittances measured in the real 
world. 

Conclusion 

Representative sample sets–typical sets and difference sets–
were defined in SOCS. This paper describes methods of 
selecting these sets, which contain only a small number of 
samples. Using such small-sample sets makes it possible to 
easily evaluate color reproduction for color image input 
devices. Usefulness of the sample sets was verified and 
confirmed as follows. 
(a) Typical sets represent properties of all spectral data in 

the groups, and the optimal color correction matrices 
can be easily estimated through the use of typical set 
samples. Color reproduction errors for individual 
samples can easily be investigated, since the number of 
colors is small. 

(b) Difference set samples may be used as pseudo 
metamers for corresponding typical set samples. Sensor 
set quality can be evaluated by comparing color 
differences between typical set sample colors and 
difference set sample colors input by the sensor set, 
with those sensed by the human visual system. 
 
These results meet the purpose of SOCS very well. In 

an ISO technical report to be published in the near future, 
the principal part of SOCS will be the spectral data of 
representative sample sets followed by all collected spectral 
data. The authors hope that this paper will help users to use 
the technical report efficiently. 
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