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Abstract
In this paper we explore the conditions under which the
von Kries model of colour constancy is exact, an investi-
gation motivated by the fact that in practice the model has
been shown to work well for a wide range of imaging de-
vices [1] despite the fact that existing theory [2] predicts
that it should perform poorly. We present a modified the-
ory which reconciles this apparent contradiction and which
is based on the observation that von Kries adaptation treats
sensor responses independently of one another. Starting
from this point we show how to recover, for a single sen-
sor, set of surfaces, and reference illuminant, the set of von
Kries illuminants: all lights for which von Kries adapta-
tion is a perfect model of illumination change. To help us
in this task we use a linear model of surface reflectance,
but importantly, we use a local model: that is, a model de-
rived by examining reflectance only in the region to which
the sensor of interest is sensitive. Adopting such a model
and treating sensors independently of one another we show
that our new theory accurately predicts the good practical
performance of the von Kries model.

1. Introduction

Visual perception begins when light entering the eye is fo-
cused by the lens onto the surface of the retina. On the
retina’s surface are a great many light sensitive cone cells,
each classified into one of three types, differentiated by the
fact that they respond more or less strongly to light energy
at different wavelengths of the electromagnetic spectrum.
Typically the three types are referred to as long- medium-
and short- wavelength sensitive cells and their responses to
a given light stimulus are denoted as a triplet (l,m,s). It is
this triplet of cone responses which forms the basis of our
colour perception.

Since the response of these cells depends on the rel-
ative energy in the light incident upon them, it is clear

that a change in illumination will result in a change in
the cone cell responses. For example, when we look at
a white piece of paper indoors under a tungsten light, or
outdoors under bluesky daylight the relative energy of the
sources is different and by implication so too are the cone
responses to it. And yet, given two different stimuli and
differing cone responses we perceive the paper to be a con-
stant white in both cases. This phenomenon is known as
colour constancy and it is the subject of an ongoing debate
as to whether (and if so, to what extent) our own visual
system is really colour constant. In addition, the question
as to how a general visual system (our own, or computer)
might achieve colour constancy is also the subject of much
research.

One of the most widely adopted models for colour con-
stancy is the so called von Kries model of adaptation in
which it is proposed that constancy is achieved by an in-
dependent scaling of the three different types of cone re-
sponses such that the scale factors account for changes in
the nature of the prevailing illumination. Let (l1,m1,s1)
represent the responses to a surface under one light and
(l2,m2,s2), the corresponding responses under a second
light. Then in the von Kries model the two are related by:

l1 = αl2, m1 = βm2, s1 = γs2 (1)

The model was first proposed by von Kries [3] whose work
on asymmetric colour matching led him to propose that
such an adaptation mechanism exists in our own visual
processing.

The extent to which our visual system is colour con-
stant and the question as to whether or not the von Kries
model is the mechanism by which this constancy is achieved
is not the focus of this paper. Rather, we are interested in
exploring the theoretical limits of the model itself. Specif-
ically we set out to reconcile an apparent contradiction
which has arisen with respect to the model. West and
Brill [2] have previously investigated the conditions under
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which von Kries adaptation supports perfect colour con-
stancy and their analysis predicts that the model will be
a poor one for the type of illuminants encountered in the
real world. Yet the poor performance predicted by their
analysis is at odds with our experience of using the model
in practice. Part of the explanation for this can be found
in the work of Finlayson et al who have shown [1, 4] that
an important factor affecting the performance of the model
is the properties of the sensors to which it is applied. In
particular if sensors are narrowband (they respond to light
energy in only a restricted region of the visible spectrum)
then von Kries models illumination change well. More-
over, they showed that even when sensors are not narrow-
band it is almost always possible to find a linear transform
of them which results in a set of sensors which are more
narrowband and for which the von Kries model is in turn a
good model of illumination change.

But while Finlayson et al’s work provides empirical
support for the model it does not provide a theory to ex-
plain why the model should work. In this paper we pro-
vide a new theoretical analysis which bridges the gap be-
tween the pessimistic predictions of West and Brill’s work
and the good performance which can be obtained in prac-
tice. Our analysis is based on a re-formulation of West
and Brill’s original work in which we pose, and answer
the following question. Given a triplet of sensor sensitivi-
ties, a set of surface reflectance functions and an illuminant
spectral power distribution, what are the corresponding set
of illuminants for which the von Kries model affords per-
fect colour constancy? We solve for this set of illuminants
and show that, as West and Brill’s original work predicts,
for typical situations, von Kries’ model is a poor one. To
reconcile the mismatch between this theory and the good
practical performance of the model we make a further im-
portant modification to West and Brill’s analysis. Specif-
ically, we solve not for the set of von Kries invariant illu-
minants with respect to a triplet of sensor responses, but
instead, we solve for a set of invariant lights with respect
to a single sensor. That is, we consider sensors indepen-
dent of one another (as von Kries’ model itself does) and
we show that this modification leads to a much improved
theoretical performance which matches well the good per-
formance we achieve in practice.

We begin (§2) by defining a simple model of image
formation and we explore the issue of illuminant change
in the context of this model. We then present (§3) a mod-
ified form of West and Brill’s analysis original analysis to
determine a set of von Kries illuminants for a trichromatic
device. In § 4 we show that this analysis predicts that von
Kries adaptation is a poor model of illumination change,
a fact which motivates our work. Our modified analysis,
for a monochromatic sensor, is presented in § 4 and the
practical import of this analysis is explored in § 5.

2. Image Formation and Illumination
Change

We adopt a simple model of image formation founded on
the interaction of three different factors: light, surface and
sensor. A light is characterised by E(λ), its spectral power
distribution (SPD) which defines how much energy it emits
at each wavelength. A surface is represented by S(λ), its
surface reflectance function defining what proportion of
light incident upon it is reflected on a per-wavelength ba-
sis. Finally the ith sensor of a device or visual system is de-
noted by its spectral sensitivity function Qi(λ) which char-
acterises what fraction of the light incident upon it the sen-
sor absorbs, again on a per-wavelength basis. The response
of a sensor, which we denote ρi can thus be expressed as:

ρi =
�

ω
E(λ)S(λ)Qi(λ)dλ (2)

where ω represents the range of wavelengths for which
the device has non-zero sensitivity. Our own, and most
other visual systems are trichromatic and thus light from
any point in a scene is represented as a triplet of sensor
responses which we denote ρ.

For the purposes of the derivations which follow, we
approximate light, surface, and sensor by their values at
a set of n discrete sample points across the range of the
visible spectrum so that Eq. (2) becomes:

ρi =
n

∑
k=1

E(λk)S(λk)Qi(λk)∆λ (3)

where the scalar ∆λ accounts for the size of the sampling
interval. Or dropping the dependence on wavelength (λ)
and representing our discrete representations of light, sur-
face, and sensor as vectors we obtain:

ρi = ST diag(E)Qi (4)

where ∆λ has been incorporated into Qi and diag is the di-
agonal operator which transforms its n×1 vector argument
into an n× n diagonal matrix, whose non-zero entries are
the entries of the vector.

A further simplification which is often made is to rep-
resent lights, surfaces, or both by low-dimensional linear
models, a simplification justified by statistical analyses of
large sets of typical lights [5] and surfaces [6]. In this pa-
per we will make use of such a representation for surfaces
so that any surface S is represented:

S (λ) =
M

∑
k=1

σkSk (λ) (5)

where M, the number of basis functions, is typically much
less than n, the number of sample points used to represent
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lights and surfaces. The image formation equation now
becomes:

ρi = ([S1 . . .SM]σ)T diag(E)Qi (6)

where [S1 . . .SM] is a matrix whose columns are the ba-
sis functions of the linear model. Such a representation
is helpful since it can lead to a simplified model of illu-
mination change. For example, it can be shown [7] that if
surface reflectance is 3-dimensional, then sensor responses
to the same surface under two different lights are a linear
transform apart:

ρE1 = T ρE2 (7)

where T is a 3× 3 matrix. The von Kries model of adap-
tation simplifies this relationship even further, proposing
that corresponding sensor responses under two different il-
luminants are related by a diagonal matrix D:

ρE1 = DρE2 (8)

A slightly more general model of illumination change, is
the so called generalised coefficient proposed by Finlayson
et al [1]. In this model illumination change is again mod-
elled by a diagonal transform, but sensor responses are first
transformed by a fixed 3×3 linear transform prior to this.
In this case responses under different illuminants are re-
lated:

TsρE1 = DTsρE2 =⇒ ρE1 = T−1
s DTsρE2 (9)

The matrix Ts can be seen as a transformation of the orig-
inal sensors to some new set of sensors. Finlayson et al
set out to derive transforms such that the resulting new
set of sensors better supported von Kries adaptation. That
is, they derived sensors for which Equation (8) is a good
model of illumination change. They showed that improved
von Kries adaptation could be achieved by “sharpening”
sensors, that is, by finding a transform Ts resulting in a
set of sensors which are responsive only in a restricted re-
gion of the visible spectrum, an approach motivated by the
fact that in the limiting case of sensors responsive to light
at only a single wavelength, von Kries adaptation affords
perfect colour constancy.

The remainder of the paper aims to provide a theoreti-
cal justification of the von Kries model which explains its
good practical performance. We begin with a re-formulation
of the work of West and Brill who have previously consid-
ered the necessary and sufficient conditions for the model
to be exact.

3. West and Brill’s Analysis

West and Brill [2] set out the mathematical conditions for
the von Kries model (Equation 8) to be exactly invariant

to a change in illumination. Their analysis consists of two
main cases: first, illumination is represented as a finite-
dimensional linear model and the authors derive the con-
ditions for a reflectance to be illuminant-invariant with re-
spect to the von Kries model. In a second case the authors
adopt a linear model of reflectance and derive the illumi-
nants which are von Kries invariant with respect to this
model of reflectance and some reference illuminant. Here
we present our own solution to the second case.

We begin by adopting a linear basis of surface reflectance
functions as defined by Equation (5). Now, let ρc

k
represent

the triplet of responses of a device to the kth basis function
Sk(λ) when viewed under a reference illuminant c and let
ρo

k
be the corresponding response under an arbitrary illumi-

nant o. It can be shown that if responses ρo
k
, (k = 1 . . .M)

are related to responses ρc
k
, (k = 1 . . .M) by a von Kries

transform then so too are the responses to any other surface
representable in the basis. This follows from two facts:
first that any such surface is a linear combination of basis
functions and so, by the linear nature of image formation,
any resulting response is that same linear combination of
the responses to the basis functions, and second the fact
that if responses are related by a diagonal transform then
so too are linear combinations of these responses.

So, considering just the basis functions, let qc
i

be a M×
1 vector representing the response of the ith sensor to the
basis functions when viewed under illuminant c. That is,
for a trichromatic device:

qc
1
= [S1 . . .SM]T diag(Q1)Ec

qc
2
= [S1 . . .SM]T diag(Q2)Ec

qc
3
= [S1 . . .SM]T diag(Q3)Ec

(10)

or

rc = BT Ec (11)

where r is the three vectors qc
i
, i = 1 . . .3, stacked one on

top of the other and BT , the three matrices [S1 . . .SM]T diag(Qi),
i = 1 . . .3, stacked in the same way.

Now, for an arbitrary illuminant to be a von Kries il-
luminant with respect to the reference light the following
must be true:

ρo = Dρc

for some 3×3 diagonal matrix D. That is, responses under
the two lights must be related by a von Kries transform.
Now, any diagonal matrix has three degrees of freedom
and so can be expressed as a linear combination of any
three linearly independent basis matrices:

D = a1D1 +a2D2 +a3D3 (12)

and thus any von Kries illuminant can in turn be expressed
as the same linear combination of illuminant spectra which
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are solutions to the equations:

ri = BT Ei, i = 1 . . .3 (13)

where the elements of ri are related to rc by one of the
matrices D1, D2, or D3. For each value of i, Equation (13)
represents a linear system of equations of 3M equations
in n unknowns. In general 3M < n (the number of basis
functions, M is less than the number of sample points n
divided by 3) which implies the system is underconstrained
and thus has either zero or infinitely many solutions [8].

In the case that the system has solutions, any solution
can be expressed as a particular solution to Equation (13)
plus a solution to the corresponding homogeneous sys-
tem [8]:

0 = BT Eo (14)

This homogeneous system is independent of ri and thus in-
dependent of the basis matrices Di. So to find all von Kries
illuminants we must find three particular solutions corre-
sponding to the three sets of equations in (13) together with
the solutions to Equation (14). That is, any von Kries illu-
minant can be expressed as:

Eo = a1E1 +a2E2 +a3E3 +Eb (15)

A particular solution to Equation (13) can be found: Eo =(
BBT

)−1
Bri. The illuminant Eb, a solution to the homoge-

neous system is any illuminant in the space orthogonal to
the columns of B, a space which West and Brill referred to
as the forbidden subspace. In physical terms Eb represents
an illuminant which elicits zero response from the sensors.

4. Improved von Kries Adaptation
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Figure 1: D50 Reference illuminant (solid line) and test illumi-
nant (dashed line) together with the closest von Kries illuminant
to the test light (dashed line, with squares).

Unfortunately (and in contradiction to empirical ob-
servations) West and Brill’s analysis predicts that for real

world lights, von Kries is a poor model of illumination
change. Figure 1 illustrates this fact. For A D65 daylight
illuminant (solid line in Figure 1) we determined the set of
von Kries illuminants using the analysis above and a 3-d
linear model of reflectance. Then we investigated whether
a second (D50) daylight (the dashed line in Figure 1) was
in this set. The answer is no: the dashed line with square
markers in Figure 1 is the closest von Kries illuminant to
the second light. That is, it represents the best approxi-
mation to the light using the basis expansion defined by
Equation (15). Clearly the error in this approximation is
large and yet were we to use a von Kries model to relate
responses under the pair of illuminants we would find that
the accuracy of the model is good. Thus there is a mis-
match between theory and practice.

We reconcile this mismatch by reconsidering the anal-
ysis above. In particular we note that the von Kries model
treats sensors independently of one another and so, rather
than considering all three sensors together as West and
Brill did, we instead consider each sensor in isolation and
derive, a set of von Kries illuminants on a per-sensor basis.
To begin, let us consider a single sensor Qi from some ar-
bitrary imaging device. In theory this sensor can have sen-
sitivity across the whole range of the visible spectrum but
in practice most sensors are sensitive across only a quite
limited range of the spectrum. What is more, the work
of Finlayson et al [1] has shown that improved von Kries
adaptation is obtained by deriving a set of sharpened sen-
sors which are sensitive in only a restricted region of the
spectrum. Thus, without loss of generality we assume that
an arbitrary sensor is sensitive only in a sub-region of the
visible spectrum.

For this arbitrary sensor we would like to derive the
set of von Kries invariant illuminants and, like West and
Brill, we do so by first adopting a linear model of sur-
face reflectance. However, we introduce here an impor-
tant modification to the usual definition of a linear model
which reflects the fact that we are treating sensors inde-
pendently of one another. Suppose that our sensor is active
(has non-zero responsivity) in a wavelength range λs ≤ λ≤
λe. It follows that when modelling surface reflectances we
are interested only in their behaviour within this range of
wavelengths since variations outside this range do not af-
fect the sensor.

Thus we define a local linear model of surface reflectance
with respect to an arbitrary sensor by:

S (λ) =
Ni

∑
k=1

σkSk (λ) , λs ≤ λ ≤ λe (16)

The basis functions themselves can be derived using the
same techniques of statistical analysis set out by a num-
ber of previous authors [9, 6]. But importantly the derived
basis functions capture the variation in reflectances across
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the region of the spectrum pertinent to the sensor of inter-
est. The, number and nature of these basis functions will
vary depending on the active range of the sensor Qi and im-
portantly we have found that for the linear models derived
locally within the active region of a range of typical sen-
sors 3-basis vectors are sufficient to capture 99% or more
of this local variation whereas to capture similar variance
using a global model needs 5 or more basis vectors.

Given this sensor specific model of surface reflectance
let us now consider how we can derive the set of von Kries
illuminants for the sensor Qi. As in the West and Brill anal-
ysis, to ensure that an illuminant is a von Kries illuminant
it is sufficient to ensure that the von Kries model holds for
the surface basis functions since the result for an arbitrary
surface within this basis follows from the linear nature of
image formation. Thus, we begin by defining a reference
illuminant Ec and a linear basis [S1 . . .SMi ] (defined with
respect to the active region of Qi). Given these we can ex-
press the response of the sensor to the basis vectors by an
M×1 vector rc thus:

rc = [S1 . . .SMi ]
T diag(Qi)Ec (17)

For the case of a single sensor a von Kries illuminant is any
illuminant o such that the responses of the sensor under it,
ro are related to the responses under the reference light by
a simple scale factor:

ro = αrc (18)

Thus a von Kries illuminant is any illuminant Eo which
satisfies the following equation:

[S1 . . .SMi ]
T diag(Qi)Eo = ro = αrc (19)

Equation (19) is the single sensor version of Equation (13)
and represents a system of linear equations. There are Mi

equations, corresponding to the dimension of the surface
reflectance basis and the unknowns are the n elements of
the illuminant Eo. In general Mi will be strictly less than
n and so the system in Equation (19) is underconstrained.
Once again we can use basic results of linear algebra [8]
to characterise the solutions to this system as the sum of a
particular solution to Equation (19) plus a solution to the
corresponding homogeneous system:

[S1 . . .SMi ]
T diag(Qi)Eo = 0 (20)

By inspection, αEc is a solution to Equation (19) thus it
remains to determine solutions to Equation (20). Alge-
braically Equation (20) can be interpreted as meaning that
Eo is orthogonal to the space defined by the rows of the
matrix P = [S1 . . .SMi ]

T diag(Qi). Or, in physical terms
that Eo is an illuminant which elicits a zero response in
the sensor. Solutions to Equation (20) can be determined

by finding the null space of the matrix P, which we denote
P⊥ and which can be calculated I −PP+ where + denotes
the pseudo-inverse [8] of P. The dimensionality of this
space is n−Mi and thus any solution to Equation (20) can
be written as a linear combination of the columns of P⊥:

Eb = b1 p⊥
1

+b2 p⊥
2

+ . . .+bn−Mi p
⊥
n−Mi

(21)

From which it follows that any von Kries illuminant can
be expressed as:

Eo = αEc +Eb = αEc +b2 p⊥
2

+ . . .+bn−Mi p
⊥
n−Mi

(22)

Both α and the elements b1,b2, . . .bn−Mi can be arbitrary
scalars so that Equation (22) tells us that there are an infi-
nite set of von Kries illuminants with respect to any given
reference illuminant, surface reflectance basis, and sensor.

Such an analysis can be performed for any arbitrary
sensor, thus for a trichromatic device we can derive three
sets of von Kries illuminants, one set for each sensor. In
the next section we investigate the practical implications
of this theory.

5. Experimental Performance

We present preliminary results here for a set of sharpened
CIE colour matching functions. These functions were ob-
tained by first deriving a sharpening transform Ts, via the
method of data based sharpening described in [1]. We
then transformed the CIE colour matching functions by
this transform which results in a new sensor set. The sharp-
ening transform results in sensors which have regions of
negative sensitivity so for the purposes of these experi-
ments we ignored negative values by simply clipping them
to zero (we note that the responses resulting from these
clipped sensors are very close to those obtained using the
set with negative response). For each of these sensors we
derived a separate linear surface reflectance basis by con-
sidering variations in reflectance in the active region of
each of the three sensors. These regions are approximately
400−550nm, 460−610nm, and 540−700nm.

To derive the bases we performed a principal compo-
nent analysis of a representative set of surface reflectance
functions, specifically we used reflectances from a Mac-
beth colour checker and an Agfa IT8 72 chart. These local
bases resulted in an improved fit in each region of inter-
est and in each case a 3-d model was sufficient to capture
approximately 99% of the variance as compared to 97%
for a global model with 3 basis vectors. For each sensor,
we used these local 3-d linear models of reflectance to de-
rive the set of von Kries illuminants by the method set out
above. In addition we used the method of West and Brill
(with a global 3-d reflectance basis) detailed in Section 3
to derive a fourth set of von Kries illuminants.
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In each case we took as our reference illuminant D65
daylight illumination To assess whether von Kries is a good
model of illumination change we considered a second, test,
illuminant and asked whether this illuminant was in each
of the derived sets of von Kries illuminants. That is we de-
termined the closest von Kries illuminant to the second il-
luminant using each of the four recovered sets of von Kries
illuminants. An example of the results for the case when
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Figure 2: Test Light (D50) together with the three local SPDs
predicted using a sensor by sensor analysis.

the test illuminant is D50 are shown in Figures 1 and 2.
Note that the sets derived using only a single sensor re-
cover an illuminant SPD (illustrated in Figure 2) only in
the active region of the sensor since outside this region the
sensor has zero response and so is unaffected by variations
in illuminant or reflectance. In contrast the method of West
and Brill results in an illuminant SPD (illustrated in Fig-
ure 1) across the full extent of the visible spectrum. The
results in Figures 1 and 2 reveal two important and contra-
dicting facts. First, the Brill and West analysis results in
an illuminant which is far from the actual test illuminant,
suggesting that von Kries will be a poor model of adapta-
tion for this pair of illuminants. Second, and by contrast
the illuminants derived using the single sensor analysis
set forth in this paper are very close to the actual illumi-
nant in each of the three regions. This suggests that von
Kries adaptation should afford good colour constancy for
this pair of illuminants. The latter theory is supported by
an empirical study of how sensor responses change across
these two illuminants, which reveals that von Kries adap-
tation is indeed a good model of the illuminant change. Of
course the method we have set out results in one illuminant
per sensor but in practice we require a single illuminant
to provide good von Kries adaptation for all three sensors
simultaneously. But in this case we can simply combine
the three separate illuminants by an appropriate interpo-
lation scheme to derive a single light. We note doing so
will result in an illuminant which no longer affords perfect
colour constancy but its accuracy will still be good, and

importantly the recovered illuminant will be close to the
test light.

Finally we note that the results presented for this pair
of illuminants are typical of the results we achieve for a
range of common illuminants. Thus the theory set forth in
this paper predicts the good practical performance of the
von Kries model and so meets the initial aims of the paper.
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