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Abstract 

In this paper we show that Viggiano’s Minimal Knowledge 
assumption can be used for color correction when the 
illumination is known. Indeed, given a known illuminant we 
find that real data is well modelled by the Minimal 
Knowledge assumption. Experiments demonstrate that color 
correction based on the Minimal Knowledge assumption is 
similar to that based on real data. 

1. Introduction 

XYZ tristimuli values are needed for accurate color 
reproduction. Unfortunately color devices are rarely 
colorimetric. That is, the colors a device sees (e.g. RGBs) 
are not equal to XYZ tristimulus values. Getting a color 
device to see tristimuli is called color correction. Typically 
the correction procedure involves measuring the device 
response for some calibration set of spectra. A mapping 
scheme is then derived which takes device RGBs to XYZs. 
The scheme might involve a look up table with interpolation 
(e.g. Ref. 1 ) or alternately (and the focus of this paper) 
RGBs might be mapped to XYZs using a single linear 
transform (e.g. Ref. 2). 

There are two ways we might find a linear transform. 
We might carry out a regression based on physical samples 
or, secondly, given knowledge of the spectral sensitivities of 
a camera we calculate a transform using a statistical 
assumption. The advantage of the statistical approach is that 
it is possible to model an infinite set of spectra and also to 
incorporate desirable properties that the spectra have to 
adhere. 

The simplest assumption to employ is the Maximum 
Ignorance assumption.3 Here it is assumed that spectra are 
created by a random process where the power at each 
wavelength varies between -1 and 1. Under these conditions 
it can be shown that3 the best least-squares fit transform is 
simply the linear combination of the RGB sensitivities 
which lie closest to the corresponding XYZ sensitivities. 
Unfortunately, negative power spectra do not occur and 
assuming that they do incurs a penalty: poorer calibration 
for those color signals that do occur. 

Finlayson and Drew noticed this problem and proposed 
using only the knowledge that spectra are positive and have 
bounded power4: the Maximum Ignorance with positivity 
assumption (MIP). MIP color correction is better than MI 

color correction.5 One of the advantages of the MIP method 
is that it generally enforces a correction where white is 
accurately calibrated.5 

Recently, Viggiano6 has argued that we in fact are not 
maximally ignorant. Spectra tend to have certain predictable 
‘smoothness’ properties. For example, if we measure 
spectral power at 500 Nanometres and 502 Nanometres we 
do not generally expect to see much of a difference: the 
wavelengths are surely correlated. Yet, if we compare 
measurements at 500 Nm and 600 Nm then we expect there 
may be a large difference. Viggiano’s Minimal Knowledge 
(MK) assumptions makes two predictions about color signal 
spectra: first, that the correlation between wavelengths 
depends only on the magnitude of the difference of the 
wavelengths and second that the degree of correlation does 
not depend on wavelength location e.g. the correlation 
between spectra at 450 and 500 Nm is the same as that 
between 625 and 675 Nm since they are the same 
Wavelength distance apart. 

However, as it stands the MK assumption is not 
completely defined. Rather, in Viggiano’s model there is a 
control parameter α which controls the degree of correlation 
(and so the degree of expected smoothness). Perhaps a more 
serious criticism of the MK assumption is that we know that 
real color signal spectra can be highly nonsmooth e.g. 
spectra captured where the light source is a Fluorescent 
light. 

In this paper we take a second look at the Minimal 
Knowledge assumption and find there is much to commend 
it. We begin by making the role of illumination, in camera 
calibration, explicit and seek only to deliver color correction 
when the light source is known. By making this assumption 
we factor out the conditions that might induce non smooth 
spectra and so provide conditions relative to which the MK 
assumption might work. However, analysis of real data 
demonstrates that even when the light is factored out that 
the MK assumption is not applicable. However, this failure 
is not catastrophic; indeed, the MK assumption ’almost’ 
holds. We find that wavelengths are correlated as a function 
of wavelength distance but, for all datasets we are aware of, 
the degree of correlation increases as a function of 
wavelength. This observation leads us to define a 
’normalised’ light, a ’redder’ version of the actual light, 
with respect to which the MK assumption holds. 

To demonstrate the applicability of theMK assumption 
we looked at the statistical properties of real data and found 
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the MK assumption to approximately hold. Experiments 
demonstrate that color correction driven by real color signal 
statistics is not significantly better than that derived under 
the MK assumptions. This result holds across datasets. 

In section 2 we review least-squares color correction. 
We take trouble to give a detailed treatment of the process 
and in particular show how least-squares depends on the 
covariance matrix of a spectral dataset. Section 3 looks at 
the minimal knowledge assumption. It is shown that this 
MK assumption can be used if the illumination is known 
and that the correlation matrix of the spectral dataset is 
used. Experiments are presented in section 4. 

2. Least-Squares Color Correction 

Let X(λ) denote the vector of standard observer color 
matching functions: x(λ), y(λ), and z(λ). The XYZ 
tristimulus vector x corresponding to to a reflectance S(λ) 
illuminated by a spectral power distribution E(λ) is equal to, 
 

λλλλ= ∫ω ����� ������     (1) 

 
where the integral is taken over the visible spectrum ω. Let 
us denote the m (where m is typically 3) spectral 
sensitivities of a color device (e.g. color scanner or color 
camera) as R(λ). The m-vector device response to S(λ) 
illuminated by E(λ) is equal to: 
 

λλλλ= ∫ω ����� ������      (2) 

 
We adopt the convention that the visible spectrum can 

be represented adequately by samples taken 10nm apart 
over the range 400-700nm (this assumption is routine and 
forms the basis for the linear systems approach to color 
vision). Adopting this convention will allow the integrals in 
equations (1) and (2) to be replaced by summations. It 
follows that X(λ) and R(λ) can be represented as 31 x 3 
matrices X and R: 
 

λi = 390 + 10i (i = 1 ... 31)        (3) 

Xik = Xk(λi)      (4) 

Rik = Rk(λi)      (5) 
 

The double subscript ik denotes the ith row and kth 
column of a matrix. 

Further let C(λ) (the color signal) denote the product 
function E(λ)S(λ) and c its vector approximation: 

ci = E(λi)S(λi)       (6) 

the single subscript i indexes the ith element of c. It follows 
that we can rewrite equations (1) and (2) as: 

x = Xtc          (7) 

r = Rtc          (8) 
where t is the the transpose operation. 

Let the 31 x n matrix C denote a set of n calibration 
color signal spectra. Each column of C contains a single 
color signal spectrum corresponding to the product of some 
spectral power distribution with some reflectance spectrum. 
The human observer and color device response to the entire 
calibration set are captured by the 3 x n and m x n matrices 
P and Q: 
 

P = XtC             (9) 

Q = RtC           (10) 
 

Linear color correction involves mapping the device 
responses Q to the corresponding tristimuli P. The least-
squares approach to color correction sets out to determine 
the 3 x m matrix T which best maps Q to P. Specifically, T is 
chosen to minimize:  
 

||T Q – P||          (11) 
 
||.|| above denotes Root Mean Square Error (the square root 
of the sum of squared differences between TQ and P). It is 
well known7 that the matrix T which minimizes (11) is equal 
to: 

T = PQT[QQt]-1     (12) 
 

In mathematical parlance QT[QQt]-1 is called the pseudo-
inverse of Q. Substituting (9) and (10) into (12): 
 

T = XtCCtR [RtCCtR]-1               (13) 
 

We can see from (13) that T depends only on the 31 x 
31 matrix CCt and the 31 x m device sensitivities R. 

In order to determine CCt we might proceed in one of 
two ways. First, we might image a representative set of 
surfaces under a representative set of lights. The advantage 
here is that the least-squares regression of (12) is guaranteed 
to give a good fit for this data. The disadvantage is that it is 
difficult to define ’representative set’ and moreover, we 
may wish to deliver reasonable performance for non 
representative data. The second, solution is simply to define 
the structure of CCt in such a way that it accounts for all 
spectra we might hypothesise are reasonable. In this 
approach it is a simple matter to incorporate assumptions 
about both reasonable and unexpected data. 

The Minimal Knowledge assumption (MK) proposed 
by Viggiano6 proposes that there is an expected correlation 
between measurements at different wavelengths. To 
understand what this means, it is useful to examine the role 
that CCt plays in more detail. First, note that in the regression 
formula of Equation (12) that if we substitute CCt by 

�

�
��

 

that the same matrix T is calculated (the scalar N cancels). 
 

IS&T/SID Tenth Color Imaging Conference

134



 

T = XtCCtR [RtCCtR]-1 =
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The ijth element of 
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can be written as: 
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The right hand side of (15) simply calculates the 

average of the product of the power at wavelength 4 
multiplied by the power at wavelength j (over N spectra). 
The statistical term for this quantity is the covariance of i 
with respect to j (written as σi,j  when i ≠ j and σi

2 [the 
variance at wavelength i] otherwise). If the covariance term 
is large then this tells us that the spectral power at 
wavelength i is similar to that at wavelength j. Small 
covariance indicates a weaker relationship. 

We point out that we are using the term covariance in a 
slightly non-standard way: covariance is usually calculated 
for variables where the mean is first subtracted (which has 
not been done here). But, the following argument leads to 
the conclusion that the term covariance might be adopted. 
Let us take the color signal C and add to this the 
measurements -C. Clearly, this forces the mean of the 
combined set to be zero. Moreover, it is straightforward to 
show that the covariance matrix is defined in (15) (because 
the mean of the combined data set is 0). Henceforth, we will 
consider 

�

�
��

 

as a covariance matrix and so adopt standard statistical 
nomenclature: 

Σ =
�

�
��

      (16a) 

Σii = σ
i

2            (16b) 

Σ
ii
 = σ

I,j
            (16c) 

and we rewrite (13) as 

T = XtΣR [RtΣR]-1
      (17) 

 

Figure 1. Left to right top to bottom, the correlation structures MI, 
MIP, MK and the Munsells 

 

3. The Minimal Knowledge Assumption 

Now that we understand that the driver of least-squares is a 
covariance matrix it is easy to think about and hypothesise 
potential covariance structures. For example, under the 
maximum ignorance (MI) assumption, all spectra with 
positive and negative power are equally likely and so the 
covariance between wavelengths is assumed to be 0 and in 
this case ΣMI is one half of the 31 x 31 identity matrix: 0.5I. 
Restricting attention only to all positive spectra, the 
maximum ignorance with positivity assumption,4 leads to 
ΣMIP where  

����� ��
���

��
≠=∑   and  ����=∑���

��
 

Significantly, enforcing positivity led to much improved 
color correction.5 

Viggiano6 proposed that we might reasonably assume 
more than simply positivity in defining the covariance 
structure. Specifically variance terms are the same as MIP: 

∑∑ = ���

��

�	

��
 

but the covariance terms are defined as: 
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where α is between 0 and 300 Nanometres. In Figure 1 the 
MI, MIP and MK (for α = 100) are shown, as mesh 
diagrams, in panels top left, top right, bottom left. In the 
bottom right panel the covariance structure for the 
Munsells8 multiplied by a uniform white illuminant are 
shown. 

Looking at Figure 1 the following conclusions might be 
drawn. First, that the MI and MIP assumptions yield 
covariance structures far from the covariance structure of 
real data. Second, that the minimal knowledge assumption 
is more like real data though even here the structure is 
visibly quite different. Moreover, the difference cannot be 
simply accounted for by changing the smoothness parameter 
α. All covariance structures fitted created from (18) will 
have the same diagonal (all values equal to 1/3) and all 
elements in the bands either side of the main diagonal must 
also be equal. Viggiano noticed this banding behaviour and 
pointed out that in mathematics (and specifically time series 
analysis) covariance matrices of this form are called 
Symmetric Toeplitz matrices. Visual Inspection leads us to 
conclude that real covariance structures are not necessarily 
symmetric Toeplitz. 

However, let us suppose for a moment that Σ for the 
real data is symmetric Toeplitz. What happens if we 
calculate the covariance structure for the same surfaces 
under a second illuminant? Let us rewrite the color signal 
matrix C as 

C = D(E)S     (19) 
 
where S is the 31 x N matrix of surface reflectances, E 
denotes an illuminant vector and D() places the illuminant 
along the diagonal of a 31 x 31 diagonal matrix. It follows 
then that: 
 

CCt = D(E)SStD(E)           (20) 
 

Clearly, to change to a second illuminant E’ we 
calculate 

D(E’)[D(E)]-1CCt (E)-1D(E’)         (21) 

In the example above, shown in Figure 1(d), E is a 
white illuminant Ei = 1 and so (21) is equal to 
 

D(E’) SSt D(E’)       (22) 
 

By the symmetric Toeplitz assumption the diagonal of 
SSt has elements with the same value (say v). Under the new 
illuminant the diagonal must equal v(E’)2 and so unless E is 
a white illuminant the new covariance structure cannot be 
Toeplitz. Rather than casting doubt on the Minimal 
Knowledge assumption the realisation that its applicability 
must depend on the illumination gives us a clue to how the 
minimal knowledge assumption might be applied in 
practice. 

Since we know the diagonal elements of the covariance 
matrix must be equal in order to be Toeplitz (to meet the 
minimal knowledge assumptions) we might reasonably seek 

an illuminant that makes the diagonal of the covariance 
have elements all equal to 1. Let us define a special 
illuminant F such that the ith element of F is equal to the 
reciprocal of the standard deviation of the ith wavelength: 

�
�� σ

= �
      (23) 

It follows that 

D(F)SStD(F) =

























σσ
σ

σσ
σ

σσ
σ

σσ
σ

σσ
σ

�

�

�

��

���

��

���

��

���

��

���

��

���

�

�

�

�

  (24) 

 
Seen in this way the illuminant F takes the covariance 
structure Σ to its corresponding correlation matrix. The 
correlation between i and j is defined to be 

��

��

σσ
σ �

 

(the covariance between i and j normailsed with respect to 
the standard deviations i and j). The left panel in Figure 2 
shows the illuminant F and the right panel the covariance 
structure of the Munsells as a mesh diagram. 

From Figure 2 it is clear that the correlation matrix of 
our reflectance data looks more Toeplitz than before and so 
the Minimal Knowledge assumption seems more 
reasonable. Moreover, we arrive at this Toeplitz structure by 
looking at the surfaces (the Munsells) under a bluish light. 
From a signal processing vantage (though not necessarily 
from the human vision perspective) a blue light presents a 
balanced signal set in the sense that no wavelength appears 
more important than any other. 

 
 

 

Figure 2. Under illuminant  (left panel) the covariance structure of 
the Munsells (right panel) is more Toeplitz 
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Let us denote the correlation matrix corresponding to 
the covariance Σ as Γ(Σ): 
 

Γ(Σ) = D(F)ΣD(F)        (25) 
 
where F is defined in (23). Now suppose take images with 
respect to a viewing illuminant V. Clearly, 
 

CCt = D(V)SStD(V)      (26) 
 
and this might be rewritten as: 
 

CCt = D(V/F) Γ(Σ)D(V/F)        (27) 
 
where V/F denotes the elements of V divided by 
corresponding elements of F. Simply put, if we wish to map 
RGBs to XYZs under illuminant V we can define an 
normalized illuminant V/F and substitute (26) into (13). 
Because F is a bluish light,  

�

�
 

must be reddish and so Normalised light is more reddish 
than the actual illuminant. We make the illuminant more 
reddish to account for the fact that real reflectance data sets 
tend to have a higher covariance amongst in the longer 
wavelengths. 

Let us now define a function Toeplitz that returns the 
Toeplitz matrix closest to a given correlation matrix. Such a 
function is easy to create if one remembers the banded 
structure of symmetric Toeplitz matrices. Let B(M,k) denote 
the kth band (counting outwards from the diagonal of matrix 
M. 
 

B(M,k) = {Mi,i+k, i = 1 … 31 – k} (k = 0,1,…,30)     (28) 
 

In a Toeplitz matrix all the values in B(M,k) are the 
same. So, if we take a correlation matrix and replace all the 
values in band k by the mean of the band then the resultant 
matrix is the Toeplitz matrix which is closest to the original 
in the least-squares sense. This then is the definition of the 
function Toeplitz. The left panel of Figure 3 shows the 
correlation matrix of the Munsell dataset and the right hand 
panel the corresponding closest Toeplitz approximation. 

Using the following formula we can measure how the 
degree to which a correlation matrix is Toeplitz: 
 

��

������

ΣΓ
ΣΓ−ΣΓ

=
����	�
�

���     (29) 

 
where ||.|| denotes the square root of the sum of squares. For 
the Munsells we find the data is Toeplitz with an error of 
less than 0.021 (i.e. the matrix is > 97.9% Toeplitz). 
 

 

 

Figure 3. Left Panel: correlation matrix for the Munsells, Right 
Panel: closest Toeplitz approximation 

 

 

Figure 4. Top left: correlation matrix for Macbeth, Top Right: 
Toeplitz approximation for Macbeth, Bottom Left: correlation 
matrix for Object, Bottom Right: Toeplitz approximation for 
Object 

 
 

Since the Toeplitz approximation of the correlation 
matrix gives the best case minimal knowledge conditions 
we can compute the best regression formula given the 
Minimal Knowledge assumption by substituting (30) in 
(13). 
 

    (30) 

 

IS&T/SID Tenth Color Imaging Conference

137



 

4. Experiments 

In the left hand panels of Figure 4 are the correlation 
matrices for The Macbeth color checker9 and the 170 object 
reflectances measured By Vrhel et al.10 The Right hand 
panels show the closet Toeplitz approximations. It is evident 
that all the correlation structures are similar and that they 
are well approximated by a symmetric Toeplitz matrix. 
Indeed, according to (29) the matrices are 96.68% and 
97.9% Toeplitz. Moreover, the Toeplitz structure is similar 
in all cases. 

Let us now test how well adopting the Toeplitz form of 
the correlation matrices affects correction performance. The 
ijth element of Table 1 shows the average CIE Lab error for 
mapping the RGBs (for a SONY DXC930 Camera11 and 
D65 illumination) to XYZs (also illuminant D65) for ith 
dataset (Munsell (1), Macbeth(2), Object(3)) where the jth 
dataset is used to define the covariance CCt in (13). Table 2 
repeats the experiment where CCt calculated in (30) is used 
for calibration. Tables 3 and 4 repeat the experiment for 
CIE A illuminant. Table 3 reports correction driven by the 
actual correlation matrices. Table 4 correction is based on 
the Toeplitz approximation (Minimal Knowledge). 

Table 1. Least-squares for D65 
 Munsell Macbeth Object 

Munsell 1.35 1.36 1.48 
Macbeth 1.96 1.88 1.82 
Object 1.33 1.19 1.17 

Table 2. Toeplitz least-squares for D65 
 Munsell Macbeth Object 

Munsell 1.54 1.55 1.42 
Macbeth 2.45 2.36 2.1 
Object 1.47 1.35 1.24 

 
 

It is clear that in all cases that Topelitz approximation 
delivers similar performance to that achieved by the real 
data. Moreover, that good results are still achieved when the 
least-squares transform is calibrated with respect to one data 
set and applied to a second. That a minimal knowledge 
assumption that defines correlation only by wavelength 
distance should model real data so closely and to deliver 
such good color corrections augurs well for the general 
applicability of the MK assumption. 

5. Conclusions 

Viggiano proposed a minimal knowledge assumption to 
model the color signal spectra that might be encountered by 
a color camera, In this paper we argued that the Minimal 
Knowledge assumption is not appropriate for unknown 
viewing illuminants but is appropriate if the lighting 
conditions are known. When they are known the Minimal 
Knowledge assumption can deliver calibration performance 
comparable to the best achievable by least-squares. 

Table 3. Least-squares for illuminant A 
 Munsell Macbeth Object 

Munsell 1.46 1.52 1.62 
Macbeth 2.31 2.24 2.16 
Object 1.63 1.42 1.39 

Table 4. Toeplitz least-squares for A 
 Munsell Macbeth Object 

Munsell 1.73 1.77 2.4 
Macbeth 2.83 2.74 2.93 
Object 1.8 1.59 1.48 
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