
 

Camera Sensitivity Evaluation and 
Primary Optimization 

Considering Color Constancy 
Po-Chieh Hung 

Corporate R&D Laboratories, Corporate Technology Center  
Konica Corporation 

Tokyo, Japan 
 
 

Abstract 

The evaluation of input device spectral sensitivity is often 
performed in terms of colorimetric quality and potential 
noise caused by overlaps among spectral sensitivities. Based 
on the assumption that the white balancing function should 
aim at color constancy rather than chromatic adaptation, we 
have proposed a new measure to evaluate camera 
sensitivities. We measure how accurate camera estimates 
the colors of typical objects under a standard light source 
from the ones under different light sources. Firstly, we 
apply these three evaluation measures, which are 
colorimetric error, noise amount, and newly proposed color 
constancy prediction error (CCPE), to eight sets of camera 
sensitivities. Thus it is found that sensitivity set of a 
conventional TV camera performs better CCPE than the E-
H-P primaries. Secondly, we optimized primary conversion 
with a linear diagonal matrix transform, a. k. a. von Kries 
transformation, in order to minimize CCPE. The sensitivity 
obeying the Luther condition does not necessarily perform 
the best while the conventional TV camera sensitivity gives 
the best result. Lastly, we evaluate the optimized results 
with spectral reflectance database for several light sources 
including fluorescent lamps. We found that a linear 
combination of color rendering properties (Ra) of light 
sources and reciprocal color temperature difference from 
the standard light source well estimates CCPE. 

Introduction 

In order to quantitize the color reproduction capability of 
input device, colorimetirc quality evaluation of spectral 
sensitivity is often used to indicate how close to the Luther 
condition. Several evaluation methods have been proposed. 
Neugebauer's CQF (color quality factor) is a classic one.1 
Vora and Trussell have proposed Measure of Goodness in 
order to unify the independent indexes for each channel into 
one.� The author proposed Camera Rendering Index, which 
uses eight patches defined in CIE 13.3, and found that the 
index has a high correlation with spectral reflectance 

database. 3  These methods quantitize the possibility of 
potential metamerism problem. 

On the other hand, practical cameras need to reproduce 
colors under different light sources, in addition to a standard 
light source. For example, Daylight is often regarded as the 
standard light source in photography. However, objects may 
be illuminated by an incandescent lamp having a low 
correlated color temperature, or sky blue having a high 
correlated color temperature when the objects are in shadow, 
in practice. Even under these kinds of circumstances, the 
objects are expected to be reproduced as good colors.  

Mostly, the adapted white of scene is adjusted to 
correspond to the white point of output device. This 
function in a camera is known as white balance. 

Here, a question arises: How to handle chromatic 
colors? There are two targets: One is to mimic the chromatic 
adaptation as if camera worked as human visual system, 
namely chromatic adaptation target, an the other is to 
reproduce the color as if it were under the reference lighting 
condition, namely color constancy target. 

In this paper, we propose to use the color constancy 
target for cameras.4 Firstly we review the proposal. Based 
on this assumption, color constancy prediction error (CCPE) 
is evaluated with/without optimization matrix for primary 
conversion. Secondly, we evaluate this method with 
artificial light sources and the SOCS database.5 Lastly we 
analyze major causes determining CCPE.

Chromatic Adaptation and Color Constancy 

The human visual system has the function called chromatic 
adaptation in order to recognize objects regardless viewing 
environments such as light sources. On the other hand, in 
the fields of computer vision and human vision, it is said 
that the human visual system would have an ability to 
approximate the colors under a standard light source from 
colors under different light sources. It is called color 
constancy. 

In order to clarify the relationship between chromatic 
adaptation and color constancy, we introduce the following 
hypothesis: 
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[Hypothesis] 
The function of chromatic adaptation has been evolving 

in order to realize color constancy, but it is not perfect yet.  
This hypothesis is convincing us as we consider the 

variations of viewing environments in our life. For example, 
animals need to recognize game to survive regardless of 
lighting condition such as direct sunlight, twilight, and in a 
shade.

One of circumstantial evidences that our human visual 
system is not perfect is that, for example, we would feel 
pale for human faces under blue sky without the direct rays 
from the sun, and would feel reddish for them under 
incandescent lamps. Under these conditions, we may often 
have a sense of incompatibility, and may tend to avoid a 
critical judgement of human face color. 

This hypothesis may give us answers to the following 
knowledge.  

 
(1) Fundamental primaries optimized in terms of color 
constancy are introduced into color appearance models 
because it fits to visual experiments. For instance, the 
Bradford primaries give a better match with visual 
experiments. The modified CIECAM97s uses sharpened 
Bradford primaries in addition to the Estevez-Hunt-Pointer 
primaries (E-H-P).6 

Our hypothetical answer is that the visual experiments 
could not perfectly distinguish chromatic adaptation and 
color constancy. Therefore the result of the visual 
experiments may be a compromise between them. The 
Bradford primaries might be somewhat optimized in the 
sense of color constancy. 

 
(2) As linear diagonal matrix is optimized in terms of color 
constancy, the resultant sensitivity derived from color 
matching functions would be sharper than cone spectral 
sensitivities.7

Our hypothetical answer is that, since human visual 
sensitivity may not be perfectly optimized for color 
constancy yet, there may be a different optimum. Some 
might mix up the spectral sensitivity generated by the 
diagonal matrix with the real spectral sensitivity. 

 
(3) White balance should be performed at the level of RGB 
sensors of TV Camera in practice. 

Our hypothetical answer is that, if color constancy were 
the final goal, appropriate spectral sensitivities could be 
existed. The curve could be coincidentally close to the 
sensitivities of TV camera.

As discussed above, we come to conclude that our goal 
for the white balance of camera should be the color 
constancy target, which may be the goal of chromatic 
adaptation in our evolution.  

Evaluation of Color Constancy Performance 

We evaluate two measures, which give how it can predict 
color constancy with/without optimization using a primary 
conversion matrix for color constancy. We suppose that 

gain adjustment with a diagonal matrix transform (DMT) is 
used for the white balance. This assumption is identical to 
the paper by Finlayson et al.7 

We evaluate CCPE using sensitivity curves including 
the ones used in practice. We use existing color patches for 
the spectral reflectance of typical object. Illuminant D65 is 
defined as the standard light source, and black bodies 
having low and high relative temperatures are used as 
different light sources. 

Evaluation Methods 
We evaluate sensitivity from three aspects: colorimetric 

quality, CCPE (with/without optimization) and noise. The 
following notations are used to describe the formulae (Each 
variable is a vector. Transpose signs are neglected): 

 
L: Spectral distribution of light source,  
R: Spectral reflectance of patches, 
S: Spectral sensitivity, 
F: Color matching functions, 
A: Primary conversion matrix for color constancy 

optimization, 
B: Estimation matrix from camera output signals to 

tristimulus values, 
M: Diagonal matrix, 
T: Tristimulus values, 
O: Camera output, 
Lab(T): Conversion to L*a*b, 
E*ab(a, b): Average of ∆E*ab, 

 
where, subscript i indicates a set of spectral sensitivities, 
subscript j indicates a type of sample light source, subscript 
std denotes the standard light source. 

  
Color Reproduction Error (CRE) 

Similar to Color Rendering Index,3 we use a simple 
equation to quantize the colorimetric reproduction error. 
When 

Tref = Lref RF ,         (1) 

Oref-i = Lref RSi , Oj-i = Lj RSi ,      (2), (3) 

we define, 

Ecol =  E * ab( Lab(T) - Lab(BO) ) .         (4) 

When Ecol is minimized by Matrix B, Ecol is CRE. 
Figure 1 depicts the schematic diagram of this measure. 

 
Color Constancy Prediction Error (CCPE) 

We compare colors under the standard light source and 
the white balanced colors with DMT from the colors under 
difference light sources. 
When 

Ecci =  wj E * ab( Lab(Tstd ) - Lab(Bi Mj−>std −iOj− i )
j=1

N

∑ ,   (5) 

Ecc is CCPE, as shown in Figure 2. 
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Figure 1. Color Reproduction Error evaluation. 
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Figure 2. Color Constancy Prediction Error evaluation. 

 
Minimized Color Constancy Prediction Error (MCCPE) 

Since the primaries for white balancing can be easily 
modified by a matrix, we evaluate minimized CCPE with 
primary conversion matrix A as the following equation. 
When 

Emcci =  

w
j
E * ab( Lab(T

std
) - Lab(B

i
A

j− i
−1M

j −> std− i
A

j− i
O

j−i
)

j=1

N

∑ (6) 

is minimized by linear matrix A, Emcc is called Minimized 
CCPE, as shown in Figure 3. 
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Figure 3. Minimized Color Constancy Prediction Error 
evaluation. 

Noise 
Potential noise (mainly chromatic noise) determined by 

overlaps among spectral sensitivities is evaluated by adding 
a small fluctuation at a relative luminance of 0.184, which 
corresponds to L*=50. When raw sensor values shift plus-
or-minus c (constant), we calculate the standard deviations 
of the fluctuation along the L*a*b* axes. We used c=0.005 
for the fluctuation. We define the noise amount by RMS of 
these standard deviations. The noise amount is indicated by 
percentage normalized to the case that the E-H-P primaries 
are used. The reason why we used the E-H-P primaries as 
reference is that the primaries are thought to be the closest 
to the real cone sensitivities of the human visual system. 
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Figure 4. Noise evaluation. 

Parameters Used in Simulation 
The following parameters are used. 
 

Spectral Sensitivity 
Eight sets of camera sensitivities: RGB1, RGB2, 

CMY1, CMY2 (which are from digital still cameras), TV 
camera,8 E-H-P primaries, Bradford primaries, hypothetical 
sensitivity having three peaks, are used. 

 
Light Sources 

Illuminant A, and a black body radiation of 9300K 
(L93) as different light sources, and Illuminant D65 for the 
standard light source, are used. 

 
Range and Increment 

A wavelength range from 400 nm to 700 nm with an 
increment of 10 nm is used. 

 
Objects 

Twenty-four patches of the Macbeth color checker are 
used.  

 
Non-Linear Optimization Tool 

Non-linear optimization is performed by Solver of 
Microsoft Excel. We use the following initial values; a 
linearly optimized matrix for CRE, and a unit matrix for 
MCCPE. 
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Figure 5. Camera sensitivities used in the simulation. 

Result 

The result of the combination of the Macbeth patches and 
D65 as standard light source is shown in Table 1 and Figure 
6. While the sensitivity sets obeying the Luther condition 
give zero in CRE, RGB1, TV camera and Bradford give 
fairly small values for CCPE. RGB1 and RGB2 give two 
contrary results: a better CRE for RGB2 while a better 
CCPE for RGB1.  

When the optimized primary conversion is applied to 
evaluate MCCPE, significant improvements were observed 
for the CMY sensitivities. They becomes about one-fourth 
to one-sixth of CCPE. When a set of sensitivities obeying 
the Luther condition, MCCPEs converge to 1.64. Note that 
TV camera gives a better score of 1.58. Moreover, TV 
camera gives a lower noise level than the one of Bradford, 
by approximately 20 percent.  

Optimized sensitivities in terms of MCCPE are shown 
in Figure 7. It is interesting that all of the curves give a 
similar shape with peaks at about 450, 550, and 600 nm. 

 

Table 1. CRE, CCPE, MCCPE, and Noise 
Sensitivity CRE CCPE MCCPE Noise

RGB1 1.19 2.30 1.66 37%

RGB2 1.08 4.09 2.10 52%

CMY1 1.52 12.92 2.15 89%

CMY2 2.33 13.78 3.27 99%

TV camera 1.26 2.52 1.58 35%

E-H-P 0.00 4.03 1.65 100%

Bradford 0.00 2.45 1.64 42%

Peak 3.65 3.64 3.64 29%

CMF 0.00 5.43 1.64 64%  
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Figure 6. CRE vs. CCPE and MCCPE 
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Figure 7. Optimized sensitivities in terms of MCCPE (Peak is 
omitted because the shape is identical to the Figure 5 (h)). 
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Evaluation with Several Light Sources and 
Spectral Reflectance Database 

In the above simulation, we used a small number of color 
patches to derive the CCPE and MCCPE. Here questions 
arise: Optimized result can be applied to the other spectral 
reflectance? How about the performance under artificial 
light sources?  

Thus we employ Standard Object Colour Spectra 
database for colour reproduction evaluation (SOCS)5 with 
several light sources including fluorescent lamps. 

Error with SOCS 
We applied the eight sets of sensitivity with optimized 

primary conversion matrices calculated in the above against 
SOCS. In order to avoid the population problem, we use 
four types of error measures: errors including 95.5% and 
99.7% of SOCS data, maximum error and simple average 
(Notations E95.5, E99.7, E_MAX, and E_MAX are 
respectively used).  

We plot the relation between MCCPE calculated above 
and SOCS errors. As shown in Figure 8, coefficients of 
determination (squared correlation coefficient) for these 
four SOCS errors are 0.94, 0.93, 0.76, and 0.98, 
respectively. From this result, it is thought that the 
optimized matrices can be used for real objects. 
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Figure 8. Relation between Macbeth based MCCPE and SOCS 
errors. 

Error with Several Light Sources 
We investigate conditions in which other light sources 

are used as different light sources. Based on the primary 
conversion matrices optimized for A and L93, the SOCS 
E99.7 error under Illuminants A, C, D50, D65, L93, F1-12 
are evaluated for seven set of camera sensitivities except for 
Peak. The result is shown in Figure 9. As observed, error 
levels are depending on types of light sources; while there 
are small errors for natural and fluorescent light sources 
having good rendering index such as F7 - F9, there are large 
errors for the others. 

We assume that the error should be determined by color 
rendering index of light source (Ra) and the difference 

between standard and different light sources. Figure 10 
depicts the relationship between difference of standard (D65 
is used) and a different light source in reciprocal color 
temperature and average E99.7 of the seven sensitivity sets 
(∆RCT). As observed, the worse Ra, the worse CCPE.  
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Figure 9. SOCS E97.7 error for various light sources 
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Figure 10. Difference of color temperature and E99.7. Figures in 
the graph indicate color rendering indexes of light sources. The 
line is drawn through about Ra=100. 

 
Thus, we derive the following equation to model the 

relationship.  

CCPE(E99.7) = −1.543 ⋅ Ra + 0.0864 ⋅ ∆RTC + 159.56  (7) 

The resulted coefficient of determination is 0.93, as 
shown in Figure 11.  
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Figure 11. SOCS E99.7 and estimated error. 
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Discussion 

Obviously, the color rendering property of light sources 
affects to CCPE rather than spectral characteristics of 
objects. Noguchi proposed to optimize color constancy for 
several light sources including fluorescent lamps to avoid 
the unacceptable result in practice.9 We assume that the 
reason why his result did not give a significant improvement 
may be affected by light sources having poor Ra indexes. 
We think that Matrix A should be optimized for light 
sources having good Ra indexes; otherwise the resulted 
optimization would be disturbed by poor light sources.  

In practice, the optimization can be easily implemented 
in camera, because this approach does not require sensitivity 
measurements but only a capture of small number of color 
patches is necessary. 

Conclusion 

Base on the assumption that the realization of color 
constancy is the goal of camera's white balance, we 
evaluated color constancy prediction error for eight sets of 
sensitivities, in addition to color reproduction error and 
noise. We evaluated errors with SOCS and several light 
sources including fluorescent lamps. 
 
From our simulation, we conclude that: 
1. The sensitivity obeying the Luther condition is not 

necessarily the best performance in terms of color 
constancy,  

2. There are cases of contrary scores for CRE and CCPE,  
3. A sensitivity set of conventional TV camera gives a 

good compromise in terms of CRE, CCPE and noise.  
4. Optimized primary conversion matrix based on a small 

number of color patches gives a reasonable 
performance against SOCS. 

5. Color constancy prediction error in practical situation is 
mostly affected by color rendering property of light 
sources. 
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