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Abstract 

The spectral characteristics of sensor sensitivities are an 
important component of image signal formation and also 
essential knowledge for illuminant estimation methods. Due 
to the wide variation of sensor spectral sensitivities in 
cameras, the efficiency of illuminant estimation methods 
could also be affected. In this paper, we study the influence 
of sensor variation on the efficiency of different illuminant 
estimation methods, and find out the type of sensor 
sensitivities that have better performance for corresponding 
methods. Also, we propose a way of using spectral 
sensitivity replacement for methods to be applicable with 
unknown sensor information. The optimal replacing sensor 
sensitivities can be obtained through testing on a series of 
sensor combinations. In addition, the testing result reveals 
the efficiency descent degrees for those methods when 
using the replacing sensors. Those insensitive to incorrect 
sensor information are better methods to be applied to 
images with unknown spectral sensitivities. 

Introduction 

The formation of image signals depends on three factors, 
surface spectral reflectances, illumination, and camera 
sensor sensitivities. In color constancy research, one main 
purpose is to extract the characteristics of illuminations or 
surface reflectances from camera output signals with the 
information of sensor sensitivities that the images were 
taken with. Although sensor spectral sensitivities are 
normally treated as given information in most illuminant 
estimation methods, due to their wide variation in real 
image capture systems, it would be helpful to see the affects 
of sensor variation on the efficiency of different methods. 

There have been some former studies about the 
influence of sensor sensitivities on color constancy 
algorithms. It has long been noticed that von Kries 
adaptation model has its limitations in real color 
transformation.1,2 Only when receptor spectral sensitivities 
are narrow and do not overlap, the von Kries model could 
be ideal. Based on this, Finlayson et al. proposed the idea of 
sensor spectral sharpening, which uses a linear trans-
formation to convert original sensor sensitivities into a new 
set of sensitivities to optimize the diagonal model.3,4 Barnard 
tested the sensor sharpening method, and found out that the 

efficiency is highly dependent on both the sensors and the 
algorithms. Besides, the introduction of negative values 
could yield poor results.5,6 When evaluating linear models of 
surface spectral reflectance, Maloney discussed the role of 
photoreceptors in spectral recovery from color signals and 
made the conjecture that the broad, smooth shape of the 
spectral sensitivities enhances the constraints on surface 
reflectance functions.7 Cardei et al. studied the problem of 
white-point estimation for uncalibrated images.8 For the 
problem of non-linearity characteristics in cameras, they 
concluded that the diagonal model used for linear images 
also works in the case of gamma corrected images. The 
problem of unknown white-balance could be absorbed into 
the diagonal transformation which is required for color 
correction. 

In spite of all the above studies, it still would be helpful 
to have a systematic study about the influence from sensor 
variation on different kinds of illuminant estimation 
methods. As we know, image capturing systems have quite 
different selections of sensor spectral sensitivities. Also 
there is wide variation in illuminant estimation methods. 
Since the role of sensor sensitivities is different in the 
performance of different methods, they will cause different 
degrees of affects. In this paper a series of experiments is 
presented to see such influence. Basically, three types of 
methods are tested here, those based on simple diagonal 
transformations, those based on gamut comparisons, and 
those based on spectral recoveries. 

Another problem studied in this paper is, how could 
methods be applicable with unknown sensor information? 
In many cases, images are given without the information of 
camera spectral sensitivities. Illuminant estimation for such 
images would be harder since it adds even more unknowns 
to the original under-constrained problem. For most 
illuminant estimation methods, knowledge of sensor 
spectral characteristics is necessary in their application. 
Cardei studied this problem and proposed the efficiency 
comparisons on methods such as gray world, maximum 
RGB and neural network for images with unknown spectral 
senstivities.8 But these methods just represent the small 
subset for which the sensor information is not necessary. 
For other methods that require sensor sensitivities in their 
performance, here we study the possibility for them to be 
applicable when such information is not available. 
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When the original spectral sensitivities are unknown, 
one possible way is to find alternative information to take 
their place.  In this paper, we use some assumed spectral 
sensitivity to make replacement. Through testing a series of 
sensor combinations, the optimal replacing sensor 
sensitivities can be obtained. The testing also suggests the 
feasibility for the method to be applicable to images with 
unknown spectral sensitivities. 

Simulation of Spectral Sensor Sensitivities 

In real cameras, the selection of the three channel sensor 
sensitivities could be very different. In order to study the 
wide variation of sensor selections, we use cubic spline 
functions to simulate the real sensitivity functions.  
Although in general real spectral sensitivities are more 
complicated than the cubic spline functions, these curves 
have proven to be very effective in sensor sensitivity 
simulations,9,10 and their characteristics are easier to analyze. 
The simulated curves contain the main properties of real 
sensitivities, such as the peak wavelength and the width. 
The variation of the overlaps between different channels can 
also be simulated through different combinations of the 
three channels. 

In this paper, the problem of different white-balance is 
not considered with the assumption that such problem could 
be absorbed in diagonal transformation.8 So all the 
simulated sensor sensitivities are white-balanced to the 
same illumination. From the properties of many real camera 
sensitivities, and also from the study on optimal camera 
spectral sensitivities,10, 11 the peak-wavelengths and the half-
widths are selected as in Table 1 for creating the simulated 
sensor sensitivities with cubic spline functions. 
 
Table 1. Selections of the Peak-Wavelength and the 
Half-Width Parameters for Simulated Sensor 
Sensitivities 

 Peak-wavelength 
(nm) 

Half-width (nm) 

Red 580 620 40 60 
Green 530 550 45 65 
Blue 450 470 35 55 

 
In order to control the total number of tested sensor 

combinations, for each channel only two peak-wavelengths 
and two half-widths are selected. So there are 4 different 
selections for each channel, and altogether 64 sensor 
combinations are simulated. Those sensor sensitivities 
contain different characteristics in each channel, and their 
combinations simulate different degrees of overlaps 
between the three channels. Figure 1 shows some of the 
simulated sensitivities, with the example of different 
combinations on red and green channels. Through a series 
of experiments on the simulated 64 sensor combinations, 
the influences of sensor variation on output color signals, 
color gamut ranges, and on the efficiency of different 
illuminant estimation methods are investigated. 
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Figure 1. Part of simulated sensor sensitivities with different 
combinations in red and green channel. 
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Figure 2. Examples of chromaticity variation in (r, g) space for 
different illuminations caused by sensor variation. 

 
It has been widely known that different cameras will 

output different image signals for the same scene, even 
though they have been white-balanced to the same 
illumination. Besides, the variation of sensors will also 
create large variation in the chromaticities of illuminations, 
as in Figure 2. It shows the chromaticities in (r, g) space of 
the blackbody radiations with CCT 2500 to 8000K through 
different kinds of sensor combinations. They clearly follow 
different tracks. In addition, the variation in color signals 
caused by sensor variation will also create variation in color 
gamuts. Figure 3 (a), (b) and (c) show such gamut variation 
in the color space as (r, g), (R, G) and (R, B). Although all 
those gamuts are created with the same spectral reflectance 
database and under the same illumination that all the sensor 
combinations are white-balanced with, sensor variation still 
have large affects on the gamut shapes and areas, especially 
for those in (r, g) and (R, G) spaces. 
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(c) 
Figure 3. Examples of gamut variation in different color spaces 
caused by sensor variation. (a) In (r, g) space; (b) in (R, G) space; 
(c) in (R, B) space. 

Influences of Sensor Sensitivities on Illuminant 
Estimation Methods 

There is wide variation in illuminant estimation methods. 
Typically, their basic principles could be divided into two 
groups. One is through statistical estimation, and the other is 
through some physical properties such as highlights and 
mutual reflectances.12-15 For the former group, there are three 
types of algorithms. The first type is through some simple 
diagonal transformations of the color signals, for example 
the gray world and the maximum RGB methods; the second 
type is through different kinds of gamut comparisons 
between the image gamuts and the reference gamuts, such 
as 3-D gamut mapping,16 color by correlation,17 sensor 
correlation18,19, and so on; and the third type is through 
spectrally recovering the illuminant power distributions and 
the surface reflectances with a linear model, such as 
Maloney-Wandell method20 and illuminant detection in 
linear space.21 In this paper, we examine the influence of 
sensor sensitivities on the three types of methods. Since the 
wide variation of sensor sensitivities are realized through 
simulation, the images used in this paper for testing 
different method efficiency are also synthetic images. Those 
images are created with surface reflectance randomly 
selected from a wide range spectral reflectance database, 
and the illuminations randomly selected from blackbody 
radiations with CCT ranging from 2500K to 8000K. For 
each sensor combination studied in this paper 1000 
synthetic images are created.  All the 64,000 images are 
tested for different kinds of methods. Through comparing 
the method efficiency between different sensor 
combinations, the influence of sensor sensitivities on this 
method is determined. 

The Influence on the Methods Based on Color Signal 
Transformations 

Some illuminant estimation methods are based on 
direct diagonal transformations on sensor output signals to 
adjust the images and to obtain the chromaticities of the 
illuminations. Although the spectral information of sensor 
sensitivities is not necessary in their implementations, since 
color signals are affected by spectral sensitivities, the 
variation of sensors still have some influence on the 
efficiency of those methods. Two methods, gray world and 
maximum RGB, are tested in this experiment to see the 
influence of sensor variation. For each studied sensor 
combinations, 1000 synthetic images are tested and the 
results are analyzed. The estimation errors from the two 
methods are normally measured as the Euclidean distances 
between the real illuminants and the estimated illuminants 
in (r, g) space. Since, as shown in Figure 2, chromaticities 
of illuminations are quite different because of sensor 
variation, the Euclidean distances representing the 
estimation errors are normalized with the average distances 
between each illumination chromaticities to the standard 
white. 

The mean estimation error for each sensor combination 
is treated as the criterion of method efficiency. Their 
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statistical analysis from gray world and maximum RGB 
methods is shown in Table 2, which includes the maximum, 
minimum, mean and standard deviation of the mean 
estimation errors obtained from the tested 64 sensor 
combinations. And “std_norm” represents the normalized 
standard deviation, which is the ratio between the standard 
deviation and mean value. This value can be used to 
compare the efficiency variation caused by sensor 
differences between different methods. Data in Table 2 
show that maximum RGB has better average efficiency than 
gray world. The variation of sensor combination cause 
medium affects on both the two methods. 
 
Table 2. Data analysis of Mean Estimation Errors as 
Euclidean Distance in (r, g) Space for Gray World and 
Maximum RGB Methods. 

 min max mean std std_norm 
GW 0.042 0.059 0.052 0.0052 0.10 
MRGB 0.019 0.029 0.024 0.0020 0.084 

 
From data analysis, gray world method has peak-

wavelength in red channel as the main factor affecting 
method efficiency. The sensor combinations with small 
estimation errors have red and green channels with larger 
overlaps. For maximum RGB method, the sensor 
combinations with better performance are those at the right 
corner in Figure 1, that is, No. 7, 8, 3 and 4, which also 
have large overlaps in red and green channels. So, for these 
two methods, sensor sharpening is not necessary to obtain 
better estimation efficiency. 

The Influence on Gamut Comparison Methods 
Generally in gamut comparison methods, illuminants 

are estimated through comparing the image gamuts and the 
reference gamuts. Spectral characteristics of sensor 
sensitivities are necessary in establishing the reference 
gamuts. From previous discussion of Figure 3, the variation 
in sensor sensitivities could cause large variation in color 
gamuts. For example in (r, g) space, sensor combinations 
with large overlaps in red and green channels have small 
gamut areas, and those with small overlaps have large 
gamut areas. Such large variation in gamut will also cause 
the variation in method efficiency due to different sensor 
sensitivities. 

Two gamut mapping methods are tested in this 
experiment to see the influence from sensor sensitivities. 
One is color by correlation, which is performed in (r, g) 
space, and the other is sensor correlation method, which is 
performed in a normalized (R, B) space. For the former one, 
all the 64 sensor combinations are tested, and for the later 
one, only 16 sensor combinations are tested since green 
channel has no affects on the (R, B) space. 

For the above two methods, Table 3 describes the data 
analysis of the mean estimation errors from different sensor 
combinations. The normalized standard deviation shows 
that the efficiency of color by correlation method is strongly 
affected by the selection of sensor combination, since the 
value from this method is almost 7 times that from sensor 

correlation method. From the testing results, the main factor 
in sensors that influences the efficiency of color by 
correlation is their overlap degree. Those having small 
overlaps between each channel will have better 
performance, for example sensor combinations such as No. 
11 and 15 in Figure 1 have the lowest estimation errors. As 
a result, sensor sharpening should be helpful in improving 
the efficiency of this method. The variation in sensor 
sensitivities has much less influence on the sensor 
correlation method comparatively. The main factor in 
sensor combination is the peak-wavelength of red and blue 
channels. The sensor sensitivities with small overlaps do not 
necessarily have better efficiency. 

As previously introduced, another task in this paper is 
to study the problem for the methods to be performable 
even without the spectral characteristics of the original 
sensitivities. In gamut comparison methods, the unknown 
information can be replaced by some assumed spectral 
sensitivities in establishing reference gamuts. In order to 
find out the suitable replacing one in each method, a series 
of sensor combinations are tested on large numbers of 
images that were created with different kinds of sensor 
sensitivities. The sensor sensitivities with lower estimation 
errors are better selections to be the replacement for this 
method. In this experiment, large numbers of synthetic 
images are created with different kinds of sensor 
sensitivities, and the 64 sensor combinations as studied 
previously are tested to find out the optimal one. When 
methods are performed with the assumed sensor 
sensitivities, method efficiency would be decreased because 
of the gamut difference caused by incorrect sensor 
information. The efficiency descent degree demonstrates 
whether the method is suitable to be performed with 
unknown sensor sensitivities or not. Methods with low 
descent degrees would be better selections for illuminant 
estimation in such cases. 

Table 3. Data Analysis of Mean Estimation Errors as the 
Difference in Mired for Color by Correlation and Sensor 
Correlation Methods. 

 min max mean std std_norm 
CbyC 0.47 6.94 2.70 1.42 0.53 
SC 13.40 17.48 15.63 1.24 0.079 

Table 4. Data Analysis of Mean Estimation Errors as the 
Difference in Mired for Color by Correlation and Sensor 
Correlation Methods with Unknown Sensors. 

 min max mean std std_norm 
CbyC 35.38 51.17 41.62 4.03 0.10 
SC 16.57 23.01 19.10 2.29 0.12 

 
 
Both color by correlation and sensor correlation 

methods are tested for images with unknown sensor 
sensitivities. The statistical information for those mean 
estimation errors is in Table 4. For color by correlation 
method with incorrect sensor sensitivities, the mean 
estimation error is almost 15 times those with original 
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sensitivities. But for sensor correlation method, the mean 
estimation errors are only 22% higher when using the 
replaced sensitivities. Although originally the estimation 
efficiency from color by correlation is better than that from 
sensor correlation method, when using the replaced sensor 
sensitivities, the efficiency from the former method is much 
worse than the latter one. From the above data analysis, 
sensor correlation method is less sensitive to incorrect 
spectral sensitivities, and is the better method selection in 
illuminant estimation when applying to images with 
unknown sensors. The main reason for the later method to 
have better performance is because color signals have been 
normalized in the method and the reference gamuts in (R, B) 
space will have smaller variation for different kinds of 
sensor combinations. While color by correlation method is 
tested to be unsuitable for images with unknown sensor 
sensitivities, for sensor correlation method, the optimal 
replacing sensor combinations are the same as those having 
best performance with original sensor information. 

The Influence on Spectral Recovery Methods 
Some illuminant estimation methods, such as Maloney-

Wandell method and illumination detection in linear model, 
spectrally recover the illuminant power distribution and the 
surface reflectance from sensor output signals. Since the 
sensor spectral sensitivities are essential in forming color 
signals, they are also necessary in recovering illuminations 
from color signals. The influence of sensor sensitivities on 
this kind of method is mainly during the spectral recovery 
processing, which extracts the combined spectral 
information of illumination power distributions and surface 
reflectances from color signals. There are several methods 
used in spectral recovery, and the most widely used is the 
linear model, which expresses spectral information as linear 
combinations of some eigenvectors, for example those from 
PCA analysis. Besides, Maloney proposed some weighted 
linear recovery method with considering the affect of the 
receptor sensitivities.7 Recently, the Wiener analysis method 
has become popular in getting better spectral recovery 
efficiency.22  

In this experiment, the influence of sensor variation on 
spectral recovery efficiency is tested through two spectral 
recovery methods, PCA analysis and Wiener analysis. 
Generally the spectral recovery efficiency is judged as the 
correlation coefficient R2 between the original and the 
recovered spectral curves. The average R2 from large 
numbers of spectral recoveries can be treated as the criterion 
of the method efficiency. For each of the studied 64 sensor 
combinations, about 2000 spectral reflectances are 
recovered from the simulated color signals. The mean R2 
values are calculated for each sensor combinations and their 
statistical properties are shown in Table 5. The spectral 
recovery efficiency from Wiener analysis is a little better 
than that from PCA method. Through the normalized 
standard deviation, the variation in spectral recovery 
efficiency caused by sensor difference are small for both 
PCA and Wiener method comparing to the other methods 

discussed previously. So the selection of sensor sensitivities 
does not obviously affect the method efficiency. 
 
Table 5. Data Analysis of Spectral Recovery Efficiency 
as R2 for PCA and Wiener Methods 

 min max mean std std_norm 
PCA 0.64 0.73 0.70 0.028 0.039 
Wiener 0.71 0.75 0.73 0.013 0.018 

 
The above two spectral recovery methods are also 

tested with unknown sensor sensitivities. In this experiment, 
large numbers of color signals are created with different 
kinds of sensor sensitivities, and all the 64 sensor 
combinations are tested as the assumed spectral sensitivities 
to see the spectral recover efficiency of these two methods 
with incorrect sensors. The statistical properties of the tested 
mean R2 values are shown in Table 6. The recovery 
efficiencies for both methods are a little decreased from 
those with original sensor information. But the descent 
degrees are small comparing to gamut comparison methods, 
only about 7% for PCA analysis and about to 5% for 
Wiener analysis. It is a little surprising that in spite of the 
huge variation in color signals caused by the sensor 
variation, the spectral recovery results are not very sensitive 
to incorrect sensor information. The reason may be that 
originally the spectral recovery from only three sensor 
output signals are not very accurate, and the decrease 
caused by incorrect sensitivities does not appear very 
significant. So illuminant estimation methods based on 
spectral recovery could be applied to images without sensor 
information. Only the method efficiency is a little decreased 
when using the replacing spectral sensitivities. Besides, 
since the normalized standard deviations in Table 6 are also 
small for both methods, there is not much difference in the 
selection of sensor sensitivities to be the replacement when 
applying to images with unknown sensors. 
 
Table 6. Data analysis of Spectral Recovery Efficiency as 
R2 for PCA and Wiener Methods with Unknown Sensors 

 min max mean std std_norm 
PCA 0.57 0.68 0.65 0.026 0.040 
Wiener 0.65 0.71 0.69 0.014 0.020 

 

Conclusions 

In this paper we studied the influence of sensor sensitivities 
on the efficiency of illuminant estimation methods. First, 
the influence is highly dependent on methods. The 
normalized standard deviation of the testing results could 
reveal the degree of influence from sensor sensitivities. For 
gray world and Maximum RGB methods, they have 
medium influence on method efficiency. For gamut 
comparison method, the variation in reference gamuts 
caused by sensor differences highly affects the method 
efficiency. For different methods, the influence degrees are 
also very different. For example color by correlation has 
method efficiency very sensitive to sensor difference, but 
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their influence on sensor correlation method is medium. 
Sensor variation has small influence on spectral recovery 
methods when recovering from trichromatic values. Second, 
the types of sensor sensitivities to have better performance 
in different methods are also different. For example for 
color by correlation method, small overlaps between each 
channel will obtain better efficiency, but it is not necessary 
for the other methods. In addition, although spectral 
sensitivities are necessary in many illuminant estimation 
methods, we proposed a possible way of using replacement 
to make them applicable even without sensor information. 
We also studied the method efficiency descent degree with 
incorrect sensor sensitivities. Those with less decreasing in 
method efficiency are more suitable to be applied to images 
with unknown sensor sensitivities. In gamut comparison 
methods, it was found that color by correlation is much 
more sensitive to incorrect sensor information than sensor 
correlation method. So the later method is a better selection 
with unknown sensor information. For the methods based 
on spectral recovery from three sensor outputs, both PCA 
and Wiener analysis can be applied to images with unknown 
sensors.  
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