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Abstract 

A number of different methods exist for the color 
characterization of imaging devices such as digital camera 
systems. In this study, the use of high-order polynomials 
and artificial neural networks for color camera 
characterization are compared and contrasted. A 
quantitative evaluation of their performance is determined 
for a typical commercial camera system. The importance of 
independent training and testing sets is stressed and the 
effect of the number of samples in the training set is 
evaluated.  The results show that, if the best performance is 
considered, the two models are approximately comparable. 
Any performance advantage obtained from using a neural 
network for device characterization does not seem to be 
warranted given the additional risks of using such systems. 
The effect of training set size seems surprisingly small for 
both polynomial and neural systems with generalization 
performance only being seriously affected for training set 
sizes less than about 100. 

Introduction 

Several methods exist1,2 to enable camera RGB data to be 
transformed into device-independent CIE XYZ data and 
such colorimetric transformations are referred to as device 
characterization3. The characterization procedure typically 
involves two main processes. Firstly, the camera system is 
used to ascertain sensor values for targets with known color 
characteristics (CIE values). Secondly, these sensor values 
are transformed to match the target CIE co-ordinates. The 
aim of this study is to consider two of the most widely used 
techniques for camera characterisation (polynomials and 
artificial neural networks) and to quantitatively compare 
their performance when used to characterize a digital 
camera system. The approach described uses separate sets 
of data for developing and testing the models; these two sets 
of data are referred to as training and testing data and 
performance is evaluated for sets of training data containing 
various numbers of different samples. 

Characterization Methods 

If camera spectral sensitivities are identical to, or a linear 
transform of, the human spectral sensitivities or the CIE 

color-matching functions, then camera responses can be 
mapped to CIE tristimulus values using a simple matrix 
equation thus 

 

t = Mr      (1) 

 
where t is a 3 × 1 column vector of tristimulus values, r is a 
3 × 1 column vector of camera responses, and M is a 3 × 3 
transfer matrix that defines a linear transform. Given 
sufficient examples of the mapping (that is, camera response 
vectors and their corresponding tristimulus values) it is 
possible to compute the entries of the matrix M using 
simple techniques of linear algebra. These techniques solve 
M to provide a least-squares fit to the CIE tristimulus 
values. In practice, however, the responses of many camera 
systems are non-linear combinations of the CIE color-
matching functions and consequently simple linear 
transforms may be inadequate to characterize the camera. 
However, characterization using such higher-order 
polynomials can still be represented by an equation similar 
to Equation 1 but the matrix M becomes larger and the CIE 
tristimulus values are a function of non-linear camera-
response terms and interactions of these terms. Thus, the 
relationship given as  

 

X = a1R+a2G+a3B+a4RG+a5RB+a6GB+a7R
2+a8G

2+a9B
2+a10    (2) 

Y = a11R+a12G+a13B+a14RG+a15RB+a16GB+a17R
2+a18G

2+a19B
2+a20 

Z = a21R+a22G+a23B+a24RG+a25RB+a26GB+a27R
2+a28G

2+a29B
2+a30 

 
where XYZ are the tristimulus values and RGB are the 
camera responses, can be represented by a linear system 
using a 3 × 10 transfer matrix M. Fortunately, the entries of 
the matrix M can be determined using linear algebra in 
exactly the same way as for the linear transform. The 
number of terms that could be used in the polynomial are 
theoretically unlimited but in practice must be limited by the 
number of known samples that are used to solve the 
equations for M. 

An alternative procedure is to use artificial neural 
networks to perform mappings between camera responses 
and CIE values. There are many types of artificial neural 
network that have been developed from a style of 
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computing, known as neural computing, that was inspired 
by an understanding of the operation of biological nervous 
systems.4 Of particular interest, however, are a type of 
neural network known as a multi-layer perceptron (MLP). 
Such MLPs are of great practical interest since it has been 
shown that an MLP with a single hidden layer can 
approximate any function to any degree of accuracy. A 
detailed description of MLPs is not given here but some key 
features are now described. AN MLP consists of layers of 
processing units where the units in the first (or input) layer 
take their input from an input vector (in this case the vector 
r) and those in the final (or output) layer generate an output 
vector (in this case t). Each processing unit computes a non-
linear function of its input which then becomes the input for 
the units in the next layer. Between the input and output 
layers are one or more hidden layers. Only one hidden layer 
has been used in this work (the number of units in the input 
and output layers are fixed at three (being defined by the 
dimensions of the vectors r and t) but the number of units in 
the hidden layer needs to be empirically determined. The 
network thus performs a non-linear mapping between the 
input vector r and the output vector t. The input to each unit 
is a weighted sum of the outputs in the previous layer and 
the values of these weights need to be determined to allow 
the network to perform the mapping. Standard iterative 
techniques exist to determine the values of the weights that 
minimize the squared error between the output of the 
network and the vector t given a number of examples of the 
input-output relationship r � t. 

Experimental 

An Agfa digital StudioCam camera was used in this study. 
The camera is a three-chip CCD device with 12-bit resolu-
tion for each channel and 4500 × 3648 pixels. During the 
experiment the automatic white-balance setting was 
disabled. The lighting system consisted of two gas-filled 
tungsten lamps arranged approximately in a 0/45 illumination/ 
viewing geometry. Two imaging targets, the Macbeth 
ColorChecker DC chart and the Macbeth ColorChecker chart, 
were used as characterization stimuli for memorization and 
generalization respectively. Memorization represents the 
ability of a system to back-predict the training data that 
were used to determine the system. Generalization 
represents the ability of a system to predict testing data that 
were not used to develop the system and this is a more 
critical test of the characterization models. The spectral 
properties of the patches on the chart and the illumination 
used were measured using a Macbeth ColorEye 7000A 
spectrophotometer and a Minolta CS1000 spectroradiometer 
respectively and CIE tristimulus values were computed for 
the patches using the 1964 CIE observer data. A series of 
Munsell grey chips were used to allow a gamma correction 
for the camera so that the camera responses could be 
converted to values that were linearly related to input 
luminance. Spatial correction was also performed to 
minimize the effect of any spatial non-uniformity of the 
illumination.  

The 192 patches in the Macbeth ColorChecker DC 
chart were used as training data and the 24 patches of the 
Macbeth ColorChecker chart were used as testing data. 
Smaller training sets were derived by randomly sub-
sampling the 192 patches to generate training sets 
containing 160, 130, 100, 70 and 40 samples. All 
computations were performed using MATLAB. The 
coefficients of the polynomial methods (determined using 
pseudoinverse methods) and the weights in the neural 
networks (determined using a standard optimization 
algorithm) were both obtained to yield least-square fits to 
the training data.  

Results 

Figure 1 shows the performance of the polynomial models 
for both training and testing sets using the full 192 training 
set. In theory, as the complexity of the model increases we 
should expect the training error to consistently decrease 
whereas the testing error should reach a minimum and 
subsequently increase as the model over-fits the training 
data. Performance for the training set does generally 
decrease, whereas there is some evidence that the 
performance on the test set is approaching a minimum for 
the 3 × 16 model. 
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Figure 1. Performance of polynomial models of order 3 ×  m. 

 
Figure 2 shows similar data for the neural-network 

models. It is important to note that the values of m and n (in 
Figures 1 and 2) cannot be directly compared. The number 
of free parameters in the neural networks is invariably 
greater than in the polynomial models.  The key point of 
using separate training and testing sets, however, is to be 
able to correctly ascertain the limit of the complexity of the 
model that can be used given the complexity of the problem 
being solved and the number of training examples available 
to characterize that problem. In Figure 2 it is evident that, 
given a training set size of 192, a neural network with about 
18 hidden units is optimum and increasing the complexity 
of the network thereafter only leads to poorer generalization 
performance as the network over-fits the training data. 
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Figure 2. Performance of neural models with n hidden units. 

 
 
 
The effect of reducing the number of training examples 

for both models is illustrated in Figure 3. Figure 3 shows 
data for the neural network model with 18 hidden units and 
the polynomial model with a matrix of size 3 × 16.  

In Figure 3, the median error scores were averaged over 
five separate runs with the training set being randomly each 
time. For both models, the memorization error decreases as 
the size of the training set decreases but, as anticipated, the 
reverse trend is seen for the generalization performance. 
Somewhat surprisingly, however, generalization error is 
quite stable until the training set size falls to less than about 
100 samples. In the limit, as the number of training samples 
becomes large, the performances of the models are 
statistically indistinguishable.  

Finally, Figure 4 shows data similar to Figure 3 but the 
maximum color-difference error is reported rather than the 
median. The maximum test error for the neural network is 
generally larger than for the polynomial except when the 
number of training examples is very small, when the neural 
network maintains a reliable performance. 
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Figure 3. Effect of size of training set for best neural (NN) and 
polynomial (PN) models. 
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Figure 4. Effect of size of training set on maximum error for best 
neural (NN) and polynomial (PN) models. 

 

Discussion 

This study has shown that, when correctly assessed, the 
abilities of camera characterization models based on neural 
networks and polynomials are approximately the same. This 
should not be surprising, since MLPs have often been 
described as being non-linear curve fitters or generalized 
polynomial models. There seems to be no advantage in 
using a neural network model rather than a polynomial 
models for this sort of problem. With polynomial models 
the user needs to ascertain the exact nature of the best 
polynomial and this can only be achieved by rigorous 
experimentation as in this study. However, with neural 
networks the user faces a similar problem since the number 
of hidden units in the network needs to be empirically 
determined. The effect of the size of the training set on 
generalization performance was similar for the two types of 
model with a large difference only evident for very small 
training sets. There was some evidence that the maximum 
color difference error was greater for the neural network 
than for the polynomial. There are disadvantages, however, 
to the neural approach. The training of the network can be 
very slow, sometimes taking more than one hour, whereas 
the polynomial model can be solved in fractions of a 
second. There is also some evidence that the neural network 
models may not always converge to a global minimum 
whereas for the polynomial implementation of training and 
testing is easy and reliable. 
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