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Abstract 

This paper presents a new evaluation method of the color 
estimation accuracy for a set of multispectral color sensors. 
In this method, the probability density distribution of the 
spectral reflectance is assumed, and then it yields the 
possible range of estimation error in the color space at a 
specified confidence level. It is shown that the error range 
in the color space is expressed as the ellipsoids, when the 
probability density of the spectral reflectance is given by a 
multi-dimensional Gaussian function. Some examples of the 
evaluations of multispectral imaging systems are shown for 
different numbers of bands, and the results are compared 
with MacAdam ellipse. 

Introduction 

Since various color imaging devices have appeared recently, 
including multispectral types,1-3 it is becoming increasingly 
important to evaluate the accuracy in the color estimation of 
those devices every year. Especially for multispectral 
imaging devices, it should be concerned that the accuracy of 
the estimated colors for not only recording illuminations or 
standard observers but also various rendering illuminations 
or individual observers. However a standard method for the 
evaluation of a color imaging devices, i.e. spectral shapes of 
a set of sensors, has not been established. 

There have been several attempts to express the color 
estimation accuracy of a set of sensors by a single metric. 
Start with Neugebauer’s quality factor,4 then Vora and 
Trussell,5 Tajima,6 Vrhel and Trussell,7 Wolski et al.,8 and 
Sharma and Trussell9 have proposed respective measures. 
Since all those measures are a single figure, it can be easily 
applied in the system optimization problems. From those 
metrics however, it is difficult to understand how much 
error can be arisen intuitively. Alternatively, the ensemble 
average and maximum error of the estimated colors of a set 
of samples are often used, but it depends on the composition 
of the samples. In addition, the estimation algorithm used in 
the evaluation also affects the evaluation results. 

This paper presents a new method for the evaluation of 
the color estimation accuracy of a set of color sensors. If a 
Luther-conditioned camera is used for image capturing, the 
object color under the recording illumination can be 
obtained colorimetric accurately. However, the color under 
the different illumination from the recording is not decided 
uniquely. In this paper, this uncertainty is used for the 
evaluation of the color estimation accuracy of the sensors. 
To be more precise, the uncertainty is presented as a 
possible range of the error at a specified probability level, 
which is independent to neither sample compositions nor 
estimation method.   

Concepts 

The color gamut of reflective natural objects, the most 
famous one of which was Pointer’s in 1980,10 plays an 
important role in the evaluation of the gamut of display 
devices or the development of gamut mapping techniques. 
In contrast, the gamut of the reflectances of natural object 
has been desired recently, for the purpose of the evaluation 
of metamerism or the calculation of the gamut of hardcopy 
taking into account of metamerism. On those requests, 
spectral gamut has been investigated and several 
representations of the spectral gamut are proposed.11-12  

If we have a spectral gamut of objects, the range of the 
metameric reflectances for a set of sensor responses can be 
calculated. The reflectances inside the metameric range are 
indistinguishable to the sensors. At the same time, any 
reflectance outside this range gives a different response to 
the sensors from the responses of the inside reflectances. 
Therefore, the projection of this range to the color space can 
be the minimum range that certainly contains the true color. 
In other words, the sensors guarantee that the maximum 
error is less than the size of this range. From those 
characteristics, this range can be used for the evaluation of 
the color sensors on the color estimation accuracy. We call 
it error range below. 

If we have a probability density of the spectral 
reflectance of natural objects, instead of gamut, the error 
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range is calculated probabilistically. In this case, the error 
range is expressed as the confidence range that contains the 
true color with a specified probability level. 

In this paper, we present the error range in case of that 
the probability density of objects is expressed by the multi-
dimensional Gaussian function. 

Error Range for Gaussian Probability Case 

Derivation 
Providing that an image capturing system is linear, the 

capturing process is represented by 

 
,nHf

nfSEg

+=
+= r  (1) 

where g is a L-dimensional vector representing observed 
intensity, S is a N-by-L matrix whose i-th row vector 
represents the spectral characteristics of the i-th channel of 
the camera, Er is a L-by-L diagonal matrix representing the 
spectral power distribution of the recording illumination, f 
is a L-dimensional vector representing the spectral 
reflectance of an object, and n is a L-dimensional vector 
representing additive noise. 

The tristimulus values, e.g. CIE XYZ, of the object 
under an illumination, whose spectral intensity is given by 
Ev, is represented by 

 fTEc v= , (2) 

where c is a 3-dimensional column vector of tristimulus, T 
is a 3-by-L matrix whose row vector represents the color 
matching functions corresponding to c. 

Let us think about a range that contains the real 
tristimulus c in three-dimensional color space at a specified 
confidence, provided that a vector g is observed. Here we 
assume that the probability of f is described or 
approximated by Gaussian distribution as 
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where <f> and Σf are the average and the covariance of f. If 
the probability density of n is also Gaussian, 

 ( ) 




 Σ−∝ − nnn 1

2

1
exp n

TP , (4) 

where Σn is a covariance matrix of n, and f and n are 
independent, the conditional probability density of f given g 
is13 
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Equation (5) indicates that P(f|g) becomes also 
Gaussian. Since the tristimulus values c are obtained by 
linear projection of f as Eq. (2), the conditional probability 
of c given g is also Gaussian and its average vector and 
covariance matrix are 
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Then 95% confidence ellipsoid of c given g in the color 
space, is given by 

 ( ) ( ) 81.7*** =−Σ− cccc c
T

, (10) 

where 7.81 is the 5% of the χ2 distribution for 3 degrees of 
freedom. Equation (10) represents the three-dimensional 
ellipsoid whose center is c*, and it is the error range which 
contains the true color c at 95% confidence.  

Equation (10) indicates that the form of the error range 
is uniform in the color space obtained by Eq. (2). We can 
also say that it is independent to the estimation method. 
However, Wiener estimation has a close connection with it. 
From Eq.(8), it can be said that c* is equivalent to Wiener 
estimate when Σf, <f> and Σn are used in the estimation. 
That is, when c’ is obtained through Wiener estimation, the 
original c is contained within the ellipsoids (c – c’)T Σ*

c (c – 
c’) = 7.81 with 95% probability.  

If the size of the error range of a color input device is 
small, it can be said that it has high color reproduction 
accuracy. If we consider about an ideal case where a system 
is noise free and the condition Er

H=E
v
T is satisfied. In this 

case, all elements of matrix Σ*

c becomes 0, which means 
possible estimate is settled into one point, original c, 
without estimation error. 

Error Range on u’v’ Plane 
Error range can be expressed in other color spaces or 

planes. If we use a uniform color space, the error range 
varies depending on the color coordinates. As an example, 
error range on CIE 1976 u’v’ plane is shown.   

Chromaticity coordinates u= (u’, v’)T is defined as  
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If c is defined as CIE XYZ, the covariance of u is 
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where 
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Then the 95% confidence ellipse, i.e. error range, is given 
by 

 ( ) ( ) 991.5*** =−Σ− uuuu u
T

 (14) 

where u* is u’v’ coordinate calculated from c* and 5.991 is 
the 5% of the χ2 distribution for 2degrees of freedom.  

Computed Examples 

We compute error ranges defined by the 95% confidence 
ellipses on u’v’ plane in some conditions. In the 
computations, the covariance and average of spectral 
reflectance of 168 samples in Macbeth ColorChecker DC 
are used as the object statistics. Noise is assumed to be 
random white noise, and signal to noise ratio (SNR) is 
defined as 
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where g
w is the observed intensity of white reference. 

Spectral sensitivities of three different cameras are prepared 
(Fig. 1). First is a three-channel camera (FD420M, Flovel), 
second is a six-channel camera assembled by two 
FD420M’s and two kinds of filters in our laboratory, and 
third is a ten-channel camera with ten narrow-band 
interference color filters. Recording illumination is assumed 
as CIE D65 standard illuminant and color matching 
functions are CIE 1931.   

Figure 2 shows the results for SNR=50dB and D65 
observed illumination. The centers of the ellipses c*’s are 
sampled at even intervals in L*a*b color space as a* and 
b*=±k×20 (k=0,1,2,…) and L*=50 within the available 
range. From these results, we can see that the shape, size 
and axes direction of the ellipses are different depending on 
the chromaticity coordinates. The reason of those variation 
is the nonlinear relationship between u’v’ plane and XYZ 
color space. On the other hand, not only size but also axes 
directions of ellipses are different depending on the 
cameras, which reflect the respective color reproduction 
accuracy of cameras. We can also confirm that the size of 
ellipse is reduced as increasing the number of the color 
channels. 

Figure 3 shows the comparisons between the error 
range and MacAdam ellipses in case of D65 viewing 
illumination (noise free and SNR=50dB) and F2 viewing 
illumination (SNR=50dB) at respective white point. We can 
confirm that the sizes of the 10-channel ellipses are the 
almost same level as the MacAdam ellipses. In addition, the 
sizes of 6-channel ellipses are contained by a few times of 

MacAdam’s. We can also see that the SNR-50dB ranges 
slightly expand from the noise-free ranges, which can be 
seen that the uncertainty increases by just uncertainty of 
noise. Since the amount of the added uncertainty is same for 
every camera system, the influence is noticeable especially 
when the number of the channels is large. 

Figure 1. Spectral sensitivities of three-channel (top), six-
channel (middle), and ten- channel cameras (bottom).  
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Figure 2. 95% confidence ellipses of estimated colors for 
three-channel camera (top), six-channel camera (middle), 
and ten-channel camera (bottom). Gray points are samples 
used for the calculation of the statistics. The filled square 
symbol indicates white point of D65.   

Figure 3. 95% confidence ellipses for 3 kinds of cameras 
in comparison with MacAdam ellipses.    
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Conclusion 

This paper proposed an evaluation method for multispectral 
color sensors by an error range that derived from the 
probability density of the spectral reflectance of objects. 
When a probability density is expressed by multi-
dimensional Gaussian distribution, the error range is 
expressed as ellipsoid, the size and axes of which are 
inherent in the spectral shapes of the color sensors. As the 
results of the evaluation of multispectral imaging systems 
using the statistics from Macbeth ColorChecker DC, it can 
be confirmed that the error ranges of ten-channel system are 
almost same size of MacAdam ellipses.    
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