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Abstract 

The light reflected from an object depends not only on 
surface reflectance of the object but also on lighting 
geometry and illuminant color. As a consequence, the raw 
color recorded by a camera is not a reliable cue for color 
based tasks such as object recognition and tracking. One 
solution to this problem is to find color invariants which are 
independent of illumination. While many invariant 
functions cancel out dependency due to geometry and light 
color it is less easy to remove both dependencies. The 
comprehensive normalisation removes both geometry and 
color but at the cost of an iterative procedure. In earlier 
work we showed how the need for iteration could be 
removed by carrying out normalisations in the log color 
domain. However, we have found that both these 
normalisations, though theoretically sound, do not account 
for all dependencies that might realistically be present. 

Indeed, in image processing pipelines it is common to 
raise an image to the power of gamma either to change the 
contrast (see into shadows or highlights) or to account for 
display non-linearities. In this paper we ask, “for systems to 
which gamma functions are applied, how can we make the 
invariant approach work to facilitate color based object 
recognition?” Clearly we need to deal with gamma and 
develop a framework where gamma is removed. This is the 
major contribution of this paper. We show how a simple 
extension of the log normalisation strategy also suffices to 
remove gamma. We tested our method both on linear and 
nonlinear datasets. While producing similarly results for 
linear dataset as our previous methods, our new method 
significantly outperformed previous methods for the 
nonlinear dataset. 

1. Introduction 

Color is an important cue for object recognition and often 
used as an indexing feature for image databases.2,6,17,19 
However, object recognition experiments based on the raw 
RGB values fails when either lighting geometry or 
illuminant color changes. The reason for this is that color is 
dependent not only on surface reflectance, but also on 
lighting geometry and illuminant color. 

Two approaches are reported to circumvent this 
problem: the color constancy approach7,10,13,16,21 and color 
illuminant invariant approach.1,3,4,8,14,18,22 Color constancy 

approach attempts to recover surface reflectance (or more 
precisely correlates of surface reflectance) and this is, by 
definition, independent of lighting conditions. 
Unfortunately, color constancy has proved to be a very hard 
problem to solve. The current state of the art can only 
deliver approximate constancy. Moreover, the work of 
B.V.Funt et al.21 showed that this approach is not good 
enough to render color a stable enough cue for object 
recognition. The second approach is to index on invariant 
functions of RGBs. These functions are usually non-linear 
combinations of proximate pixels which are designed to 
factor out dependency due to illumination. 

While many illuminant invariants functions can remove 
either color dependency due to lighting geometry or color 
dependency due to illuminant color, the comprehensive 
normalization method8 was the first to cancel both. But, here 
invariance was achieved through an iterative procedure. In 
recent work we revisited the comprehensive normalization 
and showed that comprehensive normalization might be 
achieved without iteration so long as the analysis is carried 
out in log RGB space. Specifically, we showed that if we 
subtract the mean of each log RGB triple from each pixel 
and then subtract the mean log R, log G and log B (for the 
whole image) from each color channel that the result is 
independent of light color and light geometry. 

While experiments showed that this normalization 
worked well (it facilitated extremely good indexing 
performance) it is based on the assumption that camera 
response is linear. However, a gamma function (the image is 
raised to the power gamma) is often applied in real image 
coding. For example, because PC monitors apply a gamma 
of 2.2, the reciprocal (1/2.2) is usually applied to RGBs 
prior to display. That is to say that stored images are rarely 
linear. Moreover, Apple systems apply a gamma of 1.8 
implying that images of the same scene may differ 
according to the display system in use. Moreover, gamma is 
commonly applied to change the relative contrast in an 
image. Applying a gamma of less than one tends to bring 
out detail in darker regions (at the expense of the lighter 
regions) and conversely a gamma larger than one is used to 
bring out detail in the highlights. Simply put, images of the 
same scene taken with different cameras can differ in terms 
of the lighting conditions and the gamma employed. 

In this paper we show how the simple log 
normalization scheme can be extended to remove gamma 
dependency. There are two steps to log gamma 
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normalisation. First, we, as before, remove lighting 
geometry and light color by subtracting pixel means then 
color channel means. We then observe that xγ maps to γ ln x 
when logarithms are applied. It follows that if we divide 
each R, G and B by their respective standard deviations that  
γ will cancel. 

The gamma normalisation was tested in the context of 
color object recognition experiments. We found that for the 
dataset from different devices where various nonlinearities 
were applied,11 that log gamma normalization significantly 
out performed the non gamma invariant, log normalisation. 
For linear image data set the new log gamma normalisation 
delivered comparable performance. 

The rest of the paper is organised as follows: the basis 
of color image formation is introduced and color image 
normalisation methods are reviewed in Section 2. The new 
normalisation method is presented in Section 3. In section 4 
the object recognition experiments are described and results 
presented. The paper finishes with conclusions in section 5. 

2. Background 

In order to develop the theory we will adopt some widely 
used simplifying assumptions. First, we assume that the 
response of a color camera is linear. That is, if we view a 
surface under a given light and then double the intensity of 
the light we expect a doubling in the recorded RGB values. 
If we denote the ith pixel in an image (Ri, Gi, Bi) then as the 
power of the incident illumination changes then 
 

(Ri, Gi, Bi) → ([ρ
iRi

, ρ
iGi

, ρ
iBi

)    (1) 

 
where ρi is a simple scalar. Note that this scalar has a 
subscript i indicating that all pixels can have their own 
individual brightness factors. Brightness changes, or 
lighting geometry, is a local phenomenon. 

Changing the relative position of the light source with 
the surface introduces shading. Assuming matte Lambertian 
reflectance and letting n denote surface normal and e the 
lighting direction then the power of the light striking a 
surface is proportional to the scalar n.e (the vector dot-
product). It follows then that a change in shading can also 
be described according to Equation(1). It is important to 
note that the Lambertian assumption is important here. 
Equation (1) cannot account for lighting geometry changes 
for highly specular surfaces. 

Let us now consider a change in lighting color 
(assuming lighting geometry is held fixed). In almost all 
circumstances, Equation (2) approximately holds23 (or can 
be made to hold9). 
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where x, y and z are scalars. Note these scalars do not 
depend on the pixel (there is no subscript i). That is color 
change is a global phenomenon affecting the whole image. 

In this paper we assume that a gamma function is 
applied to each R, G and B channel. That is R, G, and B are 
raised to the same power gamma: 

��������
γγγ→ ������     (3) 

Notice that the same gamma is applied to all pixels in 
the image. Now combining (1), (2) and (3) we see that: 
 

(Ri, Gi, Bi) → ([xρiRi]
γ, [yρiGi]

γ, [zρiBi]
γ)   (4) 

 
To simplify matters we incorporate  into the scalars 

 

(Ri, Gi, Bi) → ([xρiRi]
γ, [yρiGi]

γ, [zρiBi]
γ)    (5) 

 

3. Log Gamma Normalization 

It is clear in RGB space that as the lighting conditions 
change, the effect on a pixel is multiplicative. In log RGB 
space, multiplication is turned into addition. As we 
presented in previous paper, this simple conceptual step 
eventually leads us to an idempotent (non-iterative) 
normalization. More importantly here, we track γ through 
the normalization stages and see that the log normalisation 
renders gamma simple to remove. 

Let r = ln[xρiRi]
γ, g = ln[yρiGi]

γ and b = ln[zρiBi]
γ. Then 

we can rewrite (5) as: 
 

(ri, gi, bi) → (x + ρI + γri, y + ρi + γgi, z + ρi + γbi)           (6) 
 

(ri, gi, bi) → (x, y, z) + ρI(1, 1, 1) + (γri, γgi, γbi)            (7) 

 
In (7) the dependencies we wish to remove are clear. 

Every pixel is translated by the same illuminant color vector 
(x, y, z) and by a second pixel dependent translation ρi(1, 1, 
1). We achieve lighting independence if we can remove 
both these translation terms. 

Equation (7) tells us in log RGB space, lighting 
geometry changing only affects the length of the log rgb 
vector in the direction of U = (1, 1, 1). That is, the 
directions orthogonal to (1, 1, 1) are unaffected by 
brightness change. It follows that we can normalize a log 
rgb to remove brightness by projecting it onto the 2-
dimensional space which is orthogonal to the line that 
spanned by U. We can do this by applying some simple 
results from linear algebra. We define a 3 x 3 projection 
matrix Pr for the space spanned by U, and a complementary 
projection matrix [I - Pr] for the space which is orthogonal 
to the space spanned by U (where I denotes the 3 x 3 
identity matrix). By definition these matrices have the 
property that Pr * (1, 1, 1)t = (1, 1, 1)t and [I - Pr] * (1, 1, 1) 
= (0, 0, 0)t[15, 5]: 
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and so 
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If we write a log rgb-vector as v = u * (1, 1, 1) + v *  

(-1, 1, 0) + w * (1, 1,-2), it is straightforward to show that 
Prv = u * (1, 1, 1) and [I - Pr]v = v * (-1, 1, 0) + w * (1, 1, 
-2). Looking at the structure of matrix [I - Pr], we can see 
that the meaning of the matrix multiplication is that we 
subtract the mean log rgb from the r, g and b values: 
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That is, we can remove dependency on lighting geometry 
by subtracting the mean log response (a ‘brightness’ 
correlate) from each pixel. 

The effect of illuminant color can be removed in a 
similar way. However, rather than dealing with log rgb 
vectors we must operate on the vector of all log red 
responses (or log green responses or log blue responses). 
From (7) we can write 

 (x + γr
1
, x + γr

2
, …, x + γrn) → (r1

γ, r
2
γ, …, rnγ) + x(1, 1, …, 1) 

It follows that the following projection matrices (which 
are n x n for an n pixel image) will respectively project a 
color channel in the direction of all ones (1, 1, …, 1) or the 
space orthogonal to this direction. 
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Again, by inspecting the structure of the projection 
matrix, we can see that to implement this normalisation we 
only need to subtract the mean red log value from all log 
red pixel values and subtract the mean log green and log 
blue values from the log green and log blue pixel values. 

To remove lighting geometry and illuminant color both 
at the same time we just apply the projectors (9) and (11) to 
the log image. This operation is easy to write down 
mathematically if we think of an n pixel image as and n x 3 
matrix of log rgbs. Denoting this image Y, we can write 
down an explicit equation for the application of the lighting 
geometry and light color normalizations: 
 

Ynormalised = (I - Pc)Y (I - Pr)       (12) 
 
here Ynormalised represents the normalised image. Though, it is 
important to remember that to implement (12) we simply 
subtract row means from rows and then column means from 
columns. 

From projection theory, we know that matrix [I - Pr] 
and [I - Pc] are both idempotent. That is to say that [I - Pr][I 
- Pr] = [I - Pr] and [I - Pc][I - Pc] = [I - Pc]. It follows then 
that removing shading or light color once, removes it 
completely: 
 

Ynormalised = (I - Pc)(I - Pc)Y (I - Pr)(I - Pr) = (I - Pc)Y (I - Pr)  (13) 
 
Notice that in the arguments set forth we did not worry too 
much about γ. The reasons for this should be clear. In log 
space γ is a multiplicative factor. If we multiply Y in (13) by 
γ then this does not affect the operations of the projectors 
involved. Let us denote the normalized image matrix as 
 

y = (I - Pc)[Yγ](I - Pr)   (14) 
 
where the role of γ is made explicit. By definition the mean 
of all the elements in y must be zero (if the mean of the 
rows and columns are individually 0 then the overall mean 
must also be 0). It follows then that γ cannot be removed by 
dividing by the mean. Rather we must use a second order 
statistic. It is easy to show that the variance of all the 
elements in y can be calculated as: 



���	�
�

��
�

�

��
��

� =σ     (15) 

where y has N rows and 3 columns (there are N pixels in the 
image) and trace() is the sum of the diagonal elements of a 
matrix. It follows that gamma can be removed by dividing 
through by the standard deviation. 
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Finally, we have equation,  
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γσ
γ=

σ
    (17) 

 
which shows a gamma only normalisation. Equation (17) is 
useful as we are interested in quantifying the affect of 
gamma and a diagonal model on image indexing (together 
or separately). 

In summary we take the log of the RGB image. At each 
pixel we subtracted the pixel mean (of the log R, G and B 
responses). We then subtracted the mean of all the resulting 
red responses from each pixels and the mean green and blue 
channel responses for the red and green color channels. The 
result is an image independent of the light color and lighting 
geometry. Further dividing by the standard deviation of the 
resultant data makes the representation independent of 
gamma. 

4. Object Recognition Experiments 

We now wished to test the log gamma normalization 
procedure as a preprocessing step for color object 
recognition. To do this we take an image, carry out a log-
gamma normalisation, and then build its color histogram. 
This histogram is then compared with normalized 
histograms stored in a database and the closest overall is 
found. Because, the database contains images (and their 
histograms) of the same objects for which we have query 
images, the closet histogram match can be used to identify 
the query. 

The first dataset we used is a composite dataset which 
is composed of Swain and Ballard20 image set (66 database 
images 32 queries), the legacy Simon Fraser image set12 (11 
database images, 22 queries) and the Berwick and Lee 
image set3 (10 database images and 10 queries). A second 
larger Simon Fraser image dataset with 20 objects imaged 
under 11 illuminations is also used as a test set. These two 
datasets have a linear response and so, in testing these, we 
were interested in whether the log gamma normalization 
might degrade the matching performance (since the more 
dependencies we cancel out the less information is left for 
matching). A third dataset comprises 28 designs captured 
under 3 lights and using 4 cameras and 2 color scanners.11 
The color response of these devices is highly non linear and 
it has been shown that a large variety of existing ’linear’ 
normalizations do not support image indexing. We hope 
that accounting for gamma in addition to light color and 
light geometry will lead to better indexing. 

Tables 1 and 2 summarize the indexing performance 
for comprehensive normalisation, log comprehensive 
normalization and the new log-gamma normalisation 
operating on the first and second dataset. Performance is 
measured using the average match percentile match20 If the 

closet database histogram to the query is the correct answer 
(both corresponding images are of the same object) then the 
correct answer is found in rank 1. If the correct answer is 
the kth closest then the correct answer has rank k. The 
corresponding percentile is calculated as 

 �
	−

−


�
 

where N is the image number of the model dataset. In 
Tables 1 and 2 we also tabulat the % of matches in ranks 1 
together with the worst case rank statistic. It is clear that for 
data sets 1 and 2 all three normalisations work well. 
Discounting gamma has not resulted in a significant fall in 
performance. 
 

Table 1. Indexing Performance of Composite Dataset 
(Ranks are % of the Dataset) 
Methods percentile Rank 1 Worst rank 
Log normalisation 99.71 95.38 4 out of 87 
comprehensive 99.71 92.31 3 out of 87 
Log gamma 
normalisation 

98.60 84.62 19 out of 87 

Table 2. Indexing Performance on Large Simon Fraser 
Dataset (Ranks are % of the Dataset) 
Methods percentile Rank 1 Worst rank 
Log normalisation 99.13 91.00 5 out of 20 
comprehensive 98.84 91.00 16 out of 20 
Log gamma 
normalisation 

97.61 84.50 10 out of 20 

 
 

We examine the third design dataset in more detail. The 
whole dataset consists of 28 designs captured with four 
different cameras under three different illuminants and also 
with two different scanners: a total of 4 * 3 * 28 + 2 * 28 = 
392 images. First we choose images of the 28 designs 
captured with a camera under a fixed illuminant as our 
database. Next we take all other images in the dataset as our 
query (test) set. Prior to indexing we introduced an ordering 
into this dataset. Specifically we asked how well a diagonal 
model of illuminant change together with a gamma 
correction accounted for the differences in color 
distributions for corresponding designs in the database and 
test set. So, given an image in the test set and its 
corresponding image in the database we find, by an 
optimization process, the parameters in Equation 5 which 
best transform the query image to the database image. The 
error in this transformation then gives us a measure of how 
well the model holds for this test image. We repeat this 
process for all test images and order the images according to 
this error. This ordering allowed us to choose the images in 
the test set for which a diagonal gamma color model worked 
with a certain degree of accuracy. For instance we found 
that the diagonal gamma model of color change accounted 
for about 20% of the test set with an error of less than 10%. 
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With this ordering defined we next ran a color indexing 
experiment as described previously: each image in the test 
set is matched to the database using a color histogram 
comparison where histograms are formed from normalized 
images. Now, rather than looking at matching results for the 
whole set of query images we investigate match 
performance as a function of how well the test images 
correspond to the diagonal-gamma model. So, for example 
we can investigate match performance for the 10% of 
images for which the model works best. These results are 
summarized in Figure 1. The x-axis of this figure denotes 
the proportion of test images for which matching 
performance is investigated and the corresponding match 
performance (average match percentile) is shown on the y-
axis. So, for example we see that if we look at 0.5 on the x-
axis (corresponding to the 50% of the test set for which a 
diagonal gamma model works best) the log gamma 
normalization delivers a percentile match of about 0.93 
compared with 0.88 and 0.82 respectively for the 
comprehensive and log-normalisations. 

From Figure 1 it is clear that the log gamma 
normalization works significantly better than the log 
normalisation, comprehensive normalisation, or gamma 
normalization only. By incorporating gamma into the 
invariant model we have improved matching performance. 
However, the overall match percentiles can be quite low. If 
we have a database where the average match percentile is 
0.95 then this means that the correct answer is in the top 5% 
of matches. This might be a tolerable number for some 
applications. However, percentiles of 0.9 or even 0.8 are 
indicative of rather poor matching performance. From the 
figure we see that at the 0.95 level that comprehensive 
normalization delivers adequate matching only for about 
10% of the test set. This increases to about 18% for the log 
normalisation and about 33% for the log-gamma procedure. 

The import of this is that many of the test images 
cannot be normalised using the non-iterative plus gamma 
normalization (in that the normalised images do not form a 
stable cue for indexing). The reason for this is readily 
understood at an average percentile of 0.95 the diagonal 
gamma model of image formation models the data with an 
error of 20%. That is, if we find by optimization the best 
diagonal matrix and best gamma that maps the database 
image colors as close as possible to the test images there is a 
residual error of 20%. Empirically, an error of above 20% is 
too high to afford good matching. 

5. Conclusion 

We have presented a new normalisation scheme which can 
cancel out the color dependencies due to lighting geometry, 
illuminant color, and gamma functions. Experimental 
results showed that this normalisation scheme performed 
similarly when images are captured with linear response 
cameras but better when confronted with images which 
have non-linearities. 
 

 

Figure 1. This figure shows performance of each of the four 
normalisation methods(log gamma, non-iterative, comprehensive 
normalisation, gamma normalisation only) on the design dataset. 
The x-axis corresponds to the proportion of query images for 
which average match percentile (y-axis) is investigated. The query 
set is sorted according to how well the images conform to a 
diagonal-gamma model. 
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