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Abstract

The Retinex Theory first introduced by Edwin Land forty
years ago has been widely used for a range of applications.
It was first introduced as a model of our own visual pro-
cessing but has since been used to perform a range of im-
age processing tasks including illuminant correction, dy-
namic range compression, and gamut mapping. In this pa-
per we show how the theory can be extended to perform yet
another image processing task: that of removing shadows
from images. Our method is founded on a simple mod-
ification to the original, path based retinex computation
such that we incorporate information about the location of
shadow edges in an image. We demonstrate that when the
location of shadow edges is known the algorithm is able
to remove shadows effectively. We also set forth a method
for the automatic location of shadow edges which makes
use of a 1-d illumination invariant image proposed in pre-
vious work [1]. In this case the location of shadow edges
is imperfect but we show that even so, the algorithm does
a good job of removing the shadows.

1. Introduction

Edwin Land [2] first proposed his Retinex Theory of
Colour Vision forty years ago as a model of how the hu-
man visual system processes a spatially varying light sig-
nal (a retinal image) to arrive at a stable perception of
colour at each point in a scene. Since that original pa-
per the model has undergone a series of major and minor
revisions both by Land [3, 4, 5] and others [6, 7, 8, 9] and
has been applied to a range of tasks. Its effectiveness as
a model for our own visual system has continued to be
explored [4, 5, 6, 9] whilst at the same time others have
considered how the theory can help in a range of image re-
production and image enhancement tasks such as dynamic
range compression [8, 10], colour correction [8, 9, 10] and
gamut mapping [11].

In this paper we explore how the retinex theory can help
to solve yet another image enhancement task: that of re-
moving shadows from images. The work we present here
is close in spirit to the work of others [8, 10] who have con-
sidered the image enhancement capabilities of the theory
and in particular is related to the use of retinex for com-
pressing the dynamic range of an image. In dynamic range
compression the goal is to use retinex to obtain an image
which has detail in both the dark and bright regions of an
image. So, for example, if we consider the top left im-
age in Figure 1 the aim might be to bring out the details in
the shadow regions of this image whilst retaining the infor-
mation content of the already bright, sunlit regions of the
scene. The goal in this paper is to take things a step further
and to use retinex to completely remove the shadows from
the image.

Shadow removal is interesting from perspectives differ-
ent than just the goal of creating a more pleasing image.
For example it is also an important problem in computer
vision since in this case shadows can often confound al-
gorithms designed to solve other vision tasks such as im-
age segmentation or the locating and tracking of objects
in a scene. In addition, there is increasing interest in the
problem of scene relighting - taking a scene captured un-
der some viewing configuration and re-rendering it with
different lighting conditions, a problem which is on the
boundary between vision and graphics. Locating and re-
moving shadows is an important step in solving this type
of problem too.

When thinking about how we might remove shadows
from an image it is important that we consider which of
these applications we are most interested in since this can
have a bearing on what restrictions we place on how we
solve the problem. For example if our goal is image en-
hancement it might be reasonable to develop an interactive
process which is able to remove shadows given some guid-
ance by a user. What is important is that this process re-
ally does result in an enhanced (or more pleasing) image.

IS&T/SID Tenth Color Imaging Conference

73



In the context of computer vision where our aim is to ex-
tract meaningful information from an image, the aesthetic
nature of the image is not so important provided that the
resulting image is shadow free and contains the salient in-
formation of the original image. But in this case it is likely
to be important that the shadow free image is obtained by
an automatic process. Finally, if our goal is to re-light a
scene then it it is likely that we want both a pleasing image
and an automatic process for obtaining it.

In the context of this paper we begin by considering
shadow removal from an image enhancement perspective.
We show how the Retinex theory can be extended to incor-
porate shadow removal and set out the conditions neces-
sary for this approach to work. We demonstrate that when
these conditions are met retinex based shadow removal can
work well. The results are twofold: a theory as to how
retinex can be used to remove shadows from images and an
interactive tool (currently written in MATLAB, but which
could easily be incorporated into existing image process-
ing software) for performing the shadow removal. In a
second part to the paper we consider how the process can
be automated. Our approach here builds on prior work [1]
which showed that under certain conditions it is possible to
obtain illumination invariant information at each and every
pixel in an image. We show how this information can be
incorporated into the retinex process and explore the effec-
tiveness of the method for automatic shadow removal.

We begin the paper with an introduction to the Retinex
Theory in Section 2, outlining the general principles of the
theory. We then show, in Section 3, how the theory can
be extended to incorporate shadow removal. In Section 4
we extend the method further and outline a procedure for
automating the shadow removal process. The implementa-
tion details of the retinex algorithm have been the subject
of much debate since Land published his first paper. We
discuss the major strands of variation in the different im-
plementations in Section 5 and set out the precise details of
our own retinex implementation together with the reasons
as to why we chose it. Finally we give some preliminary
results of our method in Section 6.

2. The Retinex Algorithm

The retinex algorithm has appeared in a number of dif-
ferent incarnations [2, 4, 5, 12, 8, 9, 7] since Land first
proposed his theory. These incarnations are quite different
both in terms of implementation details and the results they
produce but the underlying computation they are perform-
ing is essentially the same in all cases. For the purposes of
explaining this underlying computation we introduce the
theory a piece at a time, and not strictly in a form in which
it was initially proposed. We assume first that an image
is a 2-dimensional array of pixel values and that at each

pixel we have a triplet of responses which we denote RGB.
These RGB responses might represent the responses of the
light sensitive cone cells at the retina (as in Land's original
work) or more generally the responses of any three sensor
imaging device such as a digital camera. Let us further
consider the responses of each sensor separately: that is
we treat an image as three independent 2-d arrays of pix-
els. At each pixel in each band or channel we have a single
measure corresponding to the red (R), green (G), or blue
(B) sensor responses of the imaging device.

Land proposed that rather than our perception being
based directly on these sensor responses it was based on
a relative response – a relative measure of brightness in a
single channel – which he called lightness. He further pro-
posed that the lightness value of a pixel was computed by
a series of comparisons of the pixel's intensity with that of
many other pixels in the scene. In Land's theory a pixel's
lightness value is computed by taking the average of the
pixel's ratio to many other pixels in the image. To im-
plement this lightness computation Land proposed a path
based approach. Suppose we start at a random pixel which
we denote A and follow a random path (a sequence of pix-
els) to an end pixel Z. Along the way we will visit a se-
quence of pixels which we denote B, C, D, and so on. Now,
at pixel B we can compute the ratio of B to A by B

A and we
can store this value at B. Moving to pixel C, we can com-
pute the ratio of C to A by taking the product of the value
we have just stored at B: B

A and the ratio of C to B: C
B . That

is:
B

A
× C

B
=

C

A
(1)

We store this value at C and move on to the next pixel
in the path. At the end of a path we have computed the
ratio between the start pixel and each pixel along the path
and have stored this ratio at the corresponding pixel. We
repeat this process for many different paths with different
start and end points. Each time we visit a pixel we keep a
record of its ratio to the starting pixel. At the end of the
process we will have a record of a pixel's ratio to many
different pixels and to obtain an estimate of the lightness
at a pixel we average all these ratios.

Thus, the key elements in the retinex computation are to
take a ratio followed by a product along a random path and
to average the results over many different paths. For com-
putational efficienc y the algorithm is usually implemented
in log space in which ratios become differences and prod-
ucts additions. We can then express the lightness value at
a given pixel j as:

L j
R =

1
N

N

∑
i=1

Λi, j (2)

where Λi, j represents the lightness computed along a path
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P beginning at pixel i and passing through pixel j:

Λi, j = ∑
k∈P , k< j

(
log(Rk+1)− log(Rk)

)
(3)

and N denotes the number of paths which pass through
pixel j. This procedure is applied independently to each of
the three image channels and thus a triplet of lightness val-
ues: (LR,LG,LB) are obtained at each pixel in the image.
Land proposed that it was these lightness triplets rather
than the raw cone responses, that are the basis of our colour
perception.

A complete definition of the retinex algorithm requires
that we specify certain parameters: path length, number
of paths, and how a path is calculated, for example. It
has been shown [13] that the choice of these parameters
can have a significant effect on the algorithm's output. In
addition some versions of the algorithm supplement the
ratio and product operations with two further operations:
a thresholding step and a reset step. The thresholding
step is discussed in the next section where we introduce
our algorithm for shadow removal. We discuss the reset
operation in Section 5 when we give more precise im-
plementation details of the retinex algorithm. Other au-
thors [7, 8, 12] have proposed quite different implemen-
tations of the Retinex theory and we discuss those too
when we describe our own algorithm implementation in
Section 5.

Finally, an equally important question is what exactly
is being calculated by the retinex algorithm, that is, how
is the output related to the input? One interpretation of
the algorithm is as a method by which a visual system can
account for the colour (spectral content) of the prevailing
illumination. Loosely, the computation normalises sensor
responses so as to make them independent of the illumina-
tion colour so that the resulting lightness values are stable
across a change of illumination. The extent to which the al-
gorithm succeeds in this task has been studied by a number
of authors [6, 13, 9] without definite conclusions. Other
authors [8, 12] have proposed that retinex can be used as
method of compressing the dynamic range of an image,
resulting, it is argued, in a more pleasing or enhanced ver-
sion of the image. Still other authors have argued that the
algorithm achieves both ends at the same time. In the con-
text of this paper we are interested primarily in the image
enhancement properties of the approach.

3. Retinex and Shadow Removal

Land included a thresholding step in his original algorithm
which was designed to remove the effects of an illuminant
whose intensity is varying across the extent of a scene. To
understand how this works consider again that we follow
the path starting at pixel A and finishing at pixel Z. As

we move from A to Z we calculate a sequence of ratios
between adjacent pixels and by the sequential process of
ratio and product along a path we obtain the ratio of the
start pixel A, to all pixels along the path. If the pixels
are part of the same surface, then their ratio will be one.
However, if pixels are from different surfaces their ratio
will be something quite different to one. Suppose however
that in addition to a change in surface re ectance along a
path there is also a gradual change in the intensity of il-
lumination along the path. This implies that neighbouring
pixels which are from the same surface can also have a
ratio different to one. Land suggested that because illumi-
nation typically changes more gradually than does surface
re ectance, the effect of a changing illumination could be
removed by thresholding ratios such that if a ratio is only
slightly different to one it is set to one, but ratios which
are quite different to one are left unchanged. By setting
ratios close to one to be one, the resulting lightness image
is the same as would have been obtained were the illumi-
nation constant across the scene. In the log domain a ratio
of one becomes a log difference of zero and the lightness
computation is modified thus:

Λi, j = ∑
k∈P ,k< j

T
(

log(Rk+1)− log(rk)
)

(4)

where T () is defined:

T (x) =
{

0 if ‖x‖ < t
x otherwise

(5)

Provided a threshold t can be found such that non-zero log-
differences can be reliably classified as due to an illumi-
nation change or a change in surface re ectance then this
modified retinex algorithm is able to remove the effect of
a changing illumination.

Importantly shadows too arise because of an effective
change in illumination. This might be just a change in the
intensity of the illumination but more generally it can be a
change in both intensity and spectral composition of the
light. Consider for example an outdoor scene which is
partially in shadow, for example the scene in the top left
of Figure 1. In the non-shadow regions of this scene ob-
jects are lit by a mixture of direct sunlight and blue sky-
light. By contrast, the shaded regions are lit only by light
from the sky and as a consequence are illuminated with a
light which is both less intense and also spectrally differ-
ent to the sunlit region. But, unlike the case in which we
wish to account for a spatially varying illuminant, we can-
not assume that this change in illumination from sunlight
to shadow is a gradual one for it can be as abrupt as the
change that occurs when we cross the boundary between
different surfaces. The shadow region in Figure 1 is again
a good example: the shadow caused by the building results
in a sharp boundary between light and dark on the grass.
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Figure 1: Top left: a colour image containing sunlit and shadow
regions. Top right: a binary image defining the shadow edge.
Bottom left: the image after the shadow removal process. Bottom
right: the corresponding 1-d illuminant invariant image.

Thus thresholding intensity changes will not remove an il-
lumination change which is due to a shadow unless we set
the threshold value to be high. But in this case we will also
likely remove differences which are due to a change in sur-
face re ectance as well. However, suppose for the moment
that we are able to distinguish in an image, those changes
which are due to a change in illumination. That is, suppose
that we can extract the shadow edges from an image, in the
form of a binary image which we denote S(x,y). With this
shadow edge let us define a new retinex ratio computation
thus:

Λi, j = ∑
k∈P ,k< j

Tshadow

(
log(Rk+1)− log(rk)

)
(6)

where Tshadow is a new threshold function defined as:

Tshadow (xk) =
{

0 if Sk = 1
xk otherwise

(7)

Equations (6) and (7) define our new Retinex with Shadow
Removal algorithm. Applying the process to the top left
image in Figure 1 and using as the definition of the shadow
edge the top right image of the figure, we recover the lower
left image. It is clear that the effect of the process is to
greatly attenuate the shadow region in the image: the grass
is now of almost uniform colour and intensity whereas be-
fore there were two distinct regions, one in sunlight and
one in shadow.

To understand why the method works, consider that illu-
mination change can be modelled as an independent scal-
ing of sensor responses in each channel (a so-called diag-
onal model of illumination change and consider a single

surface which is partially in shadow. If the response to the
part of the surface not in shadow is (Rsun,Gsun,Bsun) and
that to the shadowed region is (Rshad ,Gshad ,Bshad) then our
model of illumination change gives us the following rela-
tionship:

Rshad = αRsun

Gshad = βGsun

Bshad = γBsun

(8)

where we note that this relationship holds (for fixed α, β,
and γ) for any pair of shadow and non-shadow pixels. Now,
if we take ratios of, for example red pixel values, within
the shadow and red pixel values outside the shadow the
resulting ratio is the same since the scale factor (α in this
case) cancels out. So a retinex path entirely in shadow or
entirely out of shadow gives the same results at each pixel
since it is merely calculating ratios within a channel.

Problems arise however when a path crosses the shadow
boundary since in this case we are calculating a ratio of a
pixel in shadow to a pixel out of shadow and the ratio is
now different. But in this case our threshold operator sets
the ratio to one (zero in log space) because it recognises
that the edge is due to a shadow and so the ratio compu-
tation is unaffected by the shadow edge. And, since the
shadow edge is the only thing that can affect the ratio com-
putation, removing its effect implies that a constant value
will be calculated by the algorithm for any pixel of a sur-
face, regardless of what it is lit by. This argument is borne
out by the recovered image in Figure 2b. We note further
that a diagonal model of illumination change is implicit in
the original argument that retinex can be used to remove
the effect of the spectral content of the scene illuminant.

4. Automating Shadow Removal

To enable shadow removal in the retinex framework we
have developed a simple tool which allows a user to inter-
actively define a shadow edge (such as the top right image
in Figure 1) in an image. This shadow edge is then input to
the modified retinex algorithm along with the image and
the image is processed to produce a shadow free image.
We note also that since in all other respects the algorithm is
identical to the original retinex algorithm the resulting im-
age will inherit the other enhancements (such as dynamic
range compression) that the algorithm provides. While as
a tool for image enhancement this interactive shadow re-
moval is adequate, in other contexts such as computer vi-
sion it is more important that the process is automatic and
so we now introduce a method to automate the shadow de-
tection step.

Our approach here builds on previous research [1] which
showed that under certain conditions (specifically for nar-
rowband image sensors and Planckian [14] illumination)
it is possible to derive, from a three-band colour image, a
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1-dimensional grey-scale image which is invariant to the
prevailing scene illumination. Brie y , the method works
by first transforming RGB values into 2-dimensional log-
chromaticity co-ordinates:

r = log(R)− log(G)
b = log(B)− log(G) (9)

Importantly it can be shown that when the restrictions set
out above are met the co-ordinates (r,b) change in a pre-
dictable manner when illumination changes. Specifically
(r,b)' s for a single surface viewed under many different
lights lie along a line in the chromaticity space. Project-
ing orthogonally to this line results in a 1-d value which is
invariant to illumination.

In fact the method is quite robust to situations in which
the restrictions are not met exactly. For example the lower
right image in Figure 1 shows the 1-d illuminant invariant
image derived from the top left image of Figure 1 which
was taken with a camera with non-narrowband sensors un-
der outdoor illumination. The crucial feature of this image
in the context of the current work is that the shadow has
been removed. This is because a shadow is caused by a
change in illumination and thus removed in the invariant
image.

In the context of retinex and shadow removal we can
utilise this invariant image in the following way. Let us
denote by Iinv the 1-d grey-scale image and by Icol the orig-
inal RGB image. And let ∇Icol and ∇Iinv further denote the
gradient images of the original colour and invariant grey-
scale images respectively. We can then modify once again
the retinex path computation as follows:

Λi, j = ∑
k∈P ,k< j

T
′

shadow

(
log(Rk+1)− log(rk)

)
(10)

where T
′

shadow is a new threshold function defined as:

T
′

shadow () =
{

0 if (∇Icol > t1)&(∇Iinv < t2)
xk otherwise

(11)

The threshold function defined by Equation (11) makes
use of information from the invariant image. Specifically
it sets to 1 any ratios which are likely to coincide with a
shadow edge where a shadow edge is defined to be an edge
which is strong in the original colour image (∇Icol > t1)
but weak in the invariant image (∇Iinv < t2). In other re-
spects the algorithm retains the path based computation
of the original retinex algorithm. In the next section we
discuss some more precise implementation details of the
algorithms we have introduced.

5. Implementation Details

For our implementation of Retinex we chose to follow
Land's original path based computation since the shadow

removal step fits seamlessly into this framework. In ad-
dition to the basic computational steps of ratio, threshold,
and product which form the basis of the algorithm some
versions of the retinex algorithm also include a fourth, re-
set step. This step comes after the ratio, threshold, and
product and is simply a check to see whether the current
value computed along a path is greater than one (zero in
log space). If it is, then the path value is reset to one and the
computation continues as before. We have experimented
with versions of the algorithm with and without a reset step
and have found the reset version to give more pleasing im-
ages and so we report results for that algorithm here. Other
authors [8, 12] have presented quite different implementa-
tions of the algorithm the relative merits of which are be-
yond the scope of this paper. Our reason for rejecting these
approaches is that it is difficult to incorporate shadow re-
moval into the framework, however, were we able to do so,
it is possible that better performance might be obtained.

An important feature of our implementation is how the
paths are defined. In this regard we adopt an approach first
suggested by Marini et al [9] and use paths based on the
concept of Brownian motion [15]. A path is defined with
respect to a start and end pixel and is specified when all
intervening pixels along the path are known. A Brownian
path is determined by first choosing a point midway be-
tween the start and end pixel and then offsetting this point
by some random factor d. This results in two path seg-
ments: the start pixel to the offset midpoint and the offset
midpoint to the end pixel. The process is repeated recur-
sively for each line segment for some pre-defined num-
ber of recursions. The resulting path is thus a sequence of
straight line segments and the retinex computation along a
path follows all pixels along all line segments on a path.
Path length, and the displacement factor d are parameters
of the algorithm. For a given image we pre-compute a
set of paths (the exact number being a third algorithm pa-
rameter) with respect to a start pixel located at (0,0) and
random end pixels. An image is then processed pixel by
pixel in the following way. The pre-computed paths are all
shifted so that they start from the current pixel and each
path is followed in turn. In this way it can happen that a
path leaves the edge of the image in which case the path
computation stops at this point. After all paths have been
followed for all pixels, the lightness values stored at each
pixel are averaged to compute the output image. Note that
the retinex computation is defined for a single channel im-
age and to process a typical 3-band colour image we must
repeat the computation three times. In doing so we use the
same paths in each case.

Marini et al argued that using Brownian paths meant
that many fewer paths needed to be followed than if paths
were defined in a completely random manner. We have
also found this to be the case, with 20 to 40 paths giving
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stable solutions for most images. However we note that
Marini et al did not specify exactly how they defined their
paths so our approach is close to theirs in spirit though not
necessarily in exact computational detail.

One other implementation detail relates to how we auto-
mate the shadow removal process. The algorithm defined
by Equations (10) and (11) will work well provided we can
determine appropriate threshold levels, t1 and t2. However,
a gain in computational efficiency can be obtained by pre-
computing a shadow edge image (a binary image like that
in the top left of Figure 1) and using the retinex algorithm
defined by Equations (6) and (7) to remove the shadow.
The shadow edge image is found by an automatic process
which was first described in [16]. The method utilises the
illuminant invariant image and a grey-scale intensity im-
age of the original colour image. The SUSAN [17] edge
operator is used to determine edges in both images and
the shadow edge is determined by finding strong edges in
the intensity image which are weak in the invariant im-
age. Finally these edges are binarised and thickened using
a morphological filter . We point out that this shadow edge
detection procedure is far from perfect and so the results
we present in the next section are preliminary only.

6. Results

We now present preliminary results for both the interac-
tive and automatic retinex shadow removal algorithm on a
small number of test images. It is important when using
the retinex algorithm that attention is given to the nature
of the input data [12]. Ideally the input data should be lin-
early related to scene luminance and should have sufficient
bit-depth: typically greater than 8-bits. The images we test
here were obtained with a commercially available HP912
Photosmart digital camera which was modified such that
we were able to access raw data unprocessed by the camera
software. This raw data is 12-bit and satisfies the linearity
condition.

It is also important that thought is given as to where
in the image reproduction pipeline the retinex processing
should be applied since by default the algorithm will per-
form some degree of correction for scene illumination in
addition to dynamic range compression and, in our case,
shadow removal. For these experiments we chose to apply
the algorithm directly to the raw camera data. In addition
we wished to avoid the algorithm performing any illumi-
nant correction which we achieved by padding the image
with a white border one quarter the size of the original im-
age. We used path lengths of approximately three-quarters
the image dimensions so that most paths crossed the white
border. As a result the output images were not colour cor-
rected.

For the purposes of display we performed a number of

subsequent processing steps to the output images. First,
we applied a correction for the scene illuminant (using an
illuminant estimate which is a robust maximum in each
channel) and we then applied a linear transform to the RGB
responses to map them into the space define by the ISO-
RGB primaries. Finally we applied a gamma correction to
the data using a value of 1/2.2 appropriate for many CRT
devices. Figure 2 shows results for two images where the

Figure 2: Original image (top), selected shadow edges (middle)
and output images with shadow removed (bottom) for two im-
ages.

shadow edge is defined interactively by a user. The top row
shows the original un-processed images and the shadow
edge for each are shown in the middle column. Finally,
the output of the retinex processing is shown in the bottom
row. It is clear that in both cases the algorithm does a good
job of removing the shadow. These results are typical of
what can be achieved when the shadow edge is selected
interactively.

For the same images we used the shadow edge detec-
tion scheme outlined above to derive the shadow edges
automatically. Figure 3 shows results for two images. It
is clear that the shadow edge detection is imperfect: for
each case the shadow is edge is found but in addition a
number of spurious edges are also interpreted by the al-
gorithm as being shadow edges. Using these shadow edge
maps as input to the retinex algorithm results in the images
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shown in the right-hand column of Figure 5. Once again
the shadows are removed but the fact that the edge maps
are imperfect results in some degradation of the images in
areas where the procedure wrongly detected shadow edges.
Nevertheless, these results represent encouraging progress
for a fully automated shadow removal scheme. In sum-

Figure 3: Automatically determined shadow edge maps (left) to-
gether with shadow removed images (right) for two images.

mary, we have presented in this paper a scheme for re-
moving shadows from images. The method builds on the
Retinex algorithm which has previously been used for a
number of different image enhancement tasks. We have
provided a simple extension to the method which grace-
fully incorporates shadow removal into the retinex frame-
work and we have shown that when accurate knowledge of
the location of shadow edges is known, the method does
an excellent job of removing the shadows. In addition
we have outlined a method for automatically detecting the
shadow edges and have demonstrated preliminary results
which show that this automated procedure is a promising
one. It remains to further explore the image enhancement
properties of the procedure, both within the framework
presented here and also in the framework of other retinex
algorithms, and to further improve the automatic shadow
detection.
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