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Abstract 

For over 20 years, color appearance models have evolved to 
the point of international standardization. These models are 
capable of predicting the appearance of spatially-simple 
color stimuli under a wide variety viewing conditions and 
have been applied to images by treating each pixel as an 
independent stimulus. It has been more recently recognized 
that revolutionary advances in color appearance modeling 
would require more rigorous treatment of spatial (and 
perhaps temporal) appearance phenomena. In addition, 
color appearance models are often more complex than 
warranted by the available visual data and limitations in the 
accuracy and precision of practical viewing conditions. 
Lastly, issues of color difference measurement are typically 
treated separate from color appearance. Thus, the stage has 
been set for a new generation of color appearance models. 
This paper presents one such model called iCAM, for image 
color appearance model. The objectives in formulating 
iCAM were to simultaneously provide traditional color 
appearance capabilities, spatial vision attributes, and color 
difference metrics, in a model simple enough for practical 
applications. The framework and initial implementation of 
the model are presented along with examples that illustrate 
its performance for chromatic adaptation, appearance scales, 
color difference, crispening, spreading, high-dynamic-range 
tone mapping, and image quality measurement. It is 
expected that the implementation of this model framework 
will be refined in the coming years as new data become 
available. 

Introduction 

The specification of color appearance has a rich history that 
can be considered to predate the establishment of CIE 
colorimetry itself. Perhaps it is noteworthy that 2002 
represents the 100th anniversary of von Kries’ seminal paper 
on chromatic adaptation.1 To this day, von Kries’ simple 
hypothesis remains the fundamental building block of color 
appearance models. von Kries strived to extend 
Grassmann’s laws of additive color mixture to changes in 
viewing conditions and thus allow the prediction of 
corresponding colors — one component of color appearance 
models. At about the same time Munsell was developing a 
concept of the other key component of color appearance 

models, a representation of appearance scales (e.g., 
lightness, chroma, and hue).2 These two components 
together form the main building blocks of all color 
appearance models, a chromatic adaptation transform and a 
color space. That early work evolved through many stages 
eventually culminating with the recommendation of the 
CIELAB color space in 1976.3 

While CIELAB represents an approximate color 
appearance model, its main purpose continues to be as the 
basis of color difference formulas. Shortly after the 
adoption of CIELAB, work began on the development of 
more accurate and comprehensive color appearance 
models.4 Work in this area accelerated rapidly through the 
late 1980’s and early 1990’s due to increased interest and 
practical applications requiring appearance models. A 
significant result from this time period was the formulation 
and adoption of CIECAM97s in 1997.5 

CIECAM97s has proven successful in focusing color 
appearance research on improvement of a single model and 
providing guidance to those attempting to implement color 
appearance modeling in practical applications such as cross-
media image reproduction. However, it was quickly realized 
that CIECAM97s had some weaknesses and several 
revisions and improvements have been proposed.6 This 
work has been ongoing in CIE TC8-01 and appears to be 
converging to a new recommendation of a revised color 
appearance model tentatively called CIECAM02.7 
CIECAM02 represents a significant improvement over 
CIECAM97s in both performance and usability. However, it 
is more similar to CIECAM97s than different and does not 
represent a new type of color appearance model. Instead it 
is a significant evolution of the same type of model. 

It has been recognized that there are significant aspects 
of color appearance phenomena that are not described well, 
if at all, by models such as CIECAM97s or CIECAM02. 
These aspects include accurate metrics of color differences, 
spatial aspects of vision and adaptation, temporal 
appearance phenomena, image quality assessment (or 
differences in appearance of complex stimuli), and image 
processing requirements. These aspects have been addressed 
individually in a variety of ways, some examples of which 
are briefly mentioned below. 

A very comprehensive model of spatial vision and 
chromatic adaptation has been described by Pattanaik et 
al.8,9 This multiscale model is capable of predicting many 
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phenomena of spatial vision and color appearance and can 
be used for useful image transformations such as tone-scale 
mapping. It can also provide the basis for an image 
difference metric for image quality assessment.10 While this 
multiscale model suggests some of the desired attributes of 
a next-generation color appearance model, it is not complete 
and its complexity has prevented widespread application in 
practical imaging applications. 

Color difference measurement has been treated 
separately from color appearance modeling through the 
formulation of complex color difference equations such as 
CIE9411 and CIEDE200012 built upon the foundation of 
CIELAB. These equations represent significant 
improvement in color tolerance prediction relative to the 
Euclidean ∆E*ab metric, but might be more complex than 
warranted by available data or useful in practical situations 
(in the case of CIEDE2000). A next generation color 
difference formula will almost certainly be based on 
fundamental improvements in the color space itself and that 
provides an opportunity to bring together the color 
appearance and color difference models and formulas. 

A related topic is the measurement of image differences 
and image quality in which both spatial vision modeling and 
color difference modeling are required. Examples of this 
work include the combination of CIELAB-based color 
difference metrics with spatial filtering of images to predict 
the visibility of differences in complex stimuli.13 Johnson 
and Fairchild presented a modular framework for such a 
model that could be used as the basis of next-generation 
models capable of being applied to various tasks.14 

A final aspect to consider is the utility of a model in 
practical applications. For example, in gamut mapping it is 
often desired to manipulate image pixels by changing 
lightness and/or chroma along lines of constant perceived 
hue. In many color spaces, such as CIELAB and 
CIECAM97s, lines of constant hue angle do not represent 
lines of constant perceived hue to the degree required for 
gamut mapping and corrections to the spaces must be 
made.15 Ebner et al., described a color space, IPT, for image 
processing applications in which constant hue lines 
represent perceived constant hue to a high degree of 
accuracy.16 Such a space does not solve all problems of 
color appearance, but does address one issue of practical 
importance and has found use in a variety of applications 
requiring significant gamut mapping. 

It is clear that many ideas for improved types of color 
appearance models have been outlined and that the time 
might be appropriate for a revolutionary change in the way 
color appearance models for cross-media image 
reproduction are formulated. The requirements for such a 
model include simple implementation for images, spatially 
localized adaptation and tone mapping for high-dynamic-
range images and other spatial phenomena, accurate color 
appearance scales for gamut mapping and other image 
editing procedures, spatial filtering for visibility of artifacts, 
and color difference metrics for image quality assessment. 
While various models or algorithms are available to address 
each of these aspects individually, none exist with all of 

these capabilities simultaneously. Such a model might well 
represent the next logical progression in color appearance 
modeling. The framework and implementation of a model 
of this type, called iCAM, is described in this paper. It is 
hoped that iCAM will provide the foundation for further 
model improvements over the coming years with the 
ultimate goal of providing a general purpose color model 
for cross-media image reproduction, image manipulations, 
image difference and quality measurements, and high-
dynamic-range imaging. 

Framework of iCAM 

 

Figure 1. Flow chart of iCAM for simple stimuli (or a single 
pixel). 

 
Figure 1 provides a flowchart of the iCAM model 

framework as applied to single stimuli. This represents the 
traditional appearance modeling approach of treating each 
pixel as a stimulus in a point-wise fashion. The process is to 
start with tristimulus values for the stimulus and adapting 
point (often the white point) and luminance values for the 
adapting level and surround. The tristumulus values are 
transformed to RGB values that are utilized in a linear, von 
Kries adaptation transform identical to the one proposed for 
CIECAM02. The adapted signals are then transformed into 
the IPT color space to take advantage of its accurate 
constant hue contours and lightness and chroma dimensions 
similar to CIELAB. The adapting and surround luminance 
levels are used to modulate the nonlinearity in the IPT 
transform to allow for the prediction of various appearance 
phenomena. A rectangular-to-cylindrical transformation is 
performed on the IPT coordinates to derive lightness, 

IS&T/SID Tenth Color Imaging Conference

34



 

 

chroma, and hue predictors and the adapting luminance 
information is then used to convert these to brightness and 
colorfulness predictors. Saturation can be easily derived 
from these. Color difference metrics are then built upon the 
appearance correlates. 

 
 

 

Figure 2. Flow chart of iCAM for spatially-complex stimuli. 

 
Figure 2 is a similar flow chart that illustrates the more 

complete version of iCAM for spatially complex stimuli. 
This is the formulation that extends color appearance 
modeling to a new level. The stimulus is replaced with an 
image and the adapting stimulus becomes a spatially (and 
temporally if temporal aspects are considered) low-pass 
image. The adapting luminance is also derived from a low-
pass image of the luminance channel and the surround 
luminance is derived from another low-pass image derived 
from a larger spatial extent. The processing is the same as 
described in Fig. 1. However, the spatial derivation of the 
viewing conditions information allows for significantly 
more complex appearance predictions to be made on an 
automated basis (e.g., spatial appearance phenomena, tone 
mapping of high-dynamic range images, image difference 
metrics, etc.). Spatial filtering of the stimulus image is 
performed using appropriate contrast sensitivity functions to 
enable image difference and image quality specifications. 

Further, the various low-pass images can be used to identify 
various image types as necessary for image-dependent 
appearance and preference transformations. 

An Implementation of iCAM 

The previous section outlined the framework of iCAM and 
provided some guidance as to how the various stages would 
be computed. At this point, there is no intention to lay out a 
single, fixed procedure for the implementation of this 
model. This is necessary since the required visual data to set 
all of the parameters simply has not been acquired yet. 
However, it is certainly possible to create an initial 
implementation of iCAM based on current practices and 
reasonable estimates of the interactions between features. 
Such an implementation has been completed for the 
purposes of this paper. It is fully expected that each 
component of iCAM will be tested and refined through new 
visual experiments over the coming decades. 

There is not enough space in a short paper to detail all 
of the equations and computations necessary for an iCAM 
implementation. However, all of the necessary equations 
have already been published and they will be described 
below with appropriate references. In addition, Mathematica 
notebooks with the full iCAM implementation described 
here and several example computations are posted on the 
internet at <www.cis.rit.edu/mcsl/iCAM/>. The 
Mathematica notebooks not only include the equations and 
examples, but also explanations of each step in the process 
for those interested in customizing any part. Other forms of 
code will also be made available. 

The input data are simply the XYZ tristimulus values of 
the stimulus/image and the adapting field and the absolute 
luminance of the adapting field and surround. These are 
normally expressed in terms of the CIE 1931 Standard 
Colorimetric Observer. For spatially-dependent 
computations such as image quality measurement, the first 
step would be spatial filtering of the images after an 
appropriate opponent transformation followed by 
transformation back to tristimulus values.13 The image and 
adapting field data would then be transformed to spectrally 
sharpened RGB responsivities for the chromatic adaptation 
transform. The currently preferred transformation is the 
modified Li et al. matrix6 that has also been selected for use 
in CIECAM02 by TC8-01.7 The chromatic adaptation 
transformation is a linear von Kries transformation with an 
incomplete adaptation factor identical to that found in 
CIECAM02.6,7 The adapting field is derived from a low-pass 
image with the degree of blurring depending on the viewing 
distance, desired result, and application. In the extreme this 
low-pass image would simply be the mean image. When 
high-dynamic range tone mapping, or local adaptation, is 
required then some low-frequency (e.g. below 0.5 
cycle/deg.) information would be retained. The adaptation 
transform is used to compute corresponding colors for a 
reference viewing condition chosen to be complete 
adaptation to a uniform illuminant D65 field to correlate 
with the IPT color space derivation. 
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Once the D65 corresponding colors are obtained, they 
are transformed via a set of exponential non-linearities and 
a linear matrix transformation to the IPT opponent color 
space that represents lightness, chroma, and hue informa-
tion.16 In average viewing conditions (typical luminance 
level and average surround), the normal IPT exponents 
would be used. In other cases the exponents are modified by 
the surround-luminance image (to predict changes in image 
contrast with surround luminance and extent) or the 
adapting field luminance image (to predict the Hunt and 
Stevens effects and allow for high-dynamic-range tone 
mapping). The application of spatially varying exponents in 
the IPT transform to perform local tone-mapping is inspired 
by the recent work of Moroney.17 The magnitude of the 
influence of absolute luminance levels can be computed 
using the FL factor currently used in CIECAM97s and 
CIECAM02.4,5,7 The FL factor is then used to modulate the 
exponents in the IPT transformation. 

The IPT opponent coordinates are converted into 
correlates of lightness, chroma, and hue (JCh) via a normal 
rectanglar to cylindrical coordinate transformation. Addi-
tionally, brightness and colorfulness (QM) predictors are 
obtained by multiplying J and C by FL raised to an appro-
priate exponent (0.25 in CIECAM02). Saturation can be 
determined through a ratio of either C/J or M/Q. Lastly, 
color differences can be calculated as Euclidean distances in 
the lightness-chroma or brightness-colorfulness spaces as 
appropriate. A more rigorous color difference equation can 
be derived by using the formulation of the CIE94 equation 
to account for changes in tolerances with chroma. A more 
complex equation will almost certainly not be necessary in 
practical applications. 

Examples 

Several examples of the performance of iCAM have been 
created and included in this section. These include descrip-
tions of its chromatic adaptation accuracy, appearance scale 
accuracy, color difference metrics and computed examples 
of its prediction of simultaneous contrast, crispening, 
spreading, high-dynamic-range tone mapping, and image 
quality scales. 

Since iCAM uses the same chromatic adaptation 
transform as CIECAM02, it will perform identically for 
situations in which only a change in state of chromatic 
adaptation is present (i.e., change in white point only). CIE 
TC8-01 has worked very hard to arrive at this adaptation 
transform and it is clear that no other model currently exists 
with better performance (although there are several with 
equivalent performance). Thus the chromatic adaptation 
performance of iCAM is as good as possible at this juncture.6,7,18 

The appearance scales of iCAM are identical to the IPT 
scales for the reference viewing conditions. The IPT space 
has the best available performance for constant hue contours 
and thus this feature will be retained in iCAM.15 This feature 
makes accurate implementation of gamut-mapping 
algorithms far easier in iCAM than in other appearance 
spaces. In addition, the predictions of lightness and chroma 

in iCAM are very good and comparable with the best color 
appearance models in typical viewing conditions.19 The 
brightness and colorfulness scales will also perform as well 
as any other model for typical conditions. In more extreme 
viewing conditions, the performance of iCAM and other 
models will begin to deviate. It is in these conditions that 
the potential strengths of iCAM will become evident. 
Further visual data must be collected to evaluate the 
model’s relative performance in such situations. 

The color difference performance of iCAM will be sim-
ilar to that of CIELAB since the space is very similar under 
the reference viewing conditions.15,19 Thus, color difference 
computations will be similar to those already commonly 
used and the space can be easily extended to have a more 
accurate difference equation following the successful format 
of the CIE94 equations.11 (Following the CIEDE2000 
equations in iCAM is not recommended since they are 
extremely complex and fitted to particular discrepancies of 
the CIELAB space such as poor constant-hue contours.) 

Simultaneous contrast (or induction) causes a stimulus 
to shift in appearance away from the color of the 
background in terms of opponent dimensions. Figure 3 
illustrates a stimulus that exhibits simultaneous contrast in 
lightness (the gray square is physically identical on all three 
backgrounds) and its prediction by iCAM as represented by 
the iCAM lightness predictor. This prediction is facilitated 
by the local adaptation features of iCAM. 

 
 

 

Figure 3. (a) Original stimulus and (b) iCAM lightness, J, image 
illustrating the prediction of simultaneous contrast. 

 
Crispening is the phenomenon whereby the color 

differences between two stimuli are perceptually larger 
when viewed on a background that is similar to the stimuli. 
Figure 4 illustrates a stimulus that exhibits chroma 
crispening20 and its prediction by the iCAM chroma 
predictor. This prediction is also facilitated by the local 
adaptation features of iCAM. 

Spreading is a spatial color appearance phenomenon in 
which the apparent hue of spatially complex image areas 
appears to fill various spatially coherent regions. Figure 5 
provides an example of spreading in which the red hue of 
the annular region spreads significantly from the lines to the 
full annulus. The iCAM prediction of spreading is 
illustrated through reproduction of the hue prediction. The 
prediction of spreading in iCAM is facilitated by spatial 
filtering of the stimulus image. 
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Figure 4. (a) Original stimulus and (b) iCAM chroma, C, image 
illustrating the prediction of chroma crispening. Original image 
from <www.hpl.hp.com/persona./Nathan_Moroney/>. 

 
 

 

Figure 5. (a) Original stimulus and (b) iCAM hue, h, image 
illustrating the prediction of spreading. 

 
 
 
 

High-dynamic-range images provide a unique 
challenge to image reproduction algorithms since they 
require the equivalent of dodging and burning historically 
performed manually in a darkroom (analog or digital). 
Human observation of high-dynamic-range scenes is 
facilitated by local adaptation that allows regions of various 
luminance levels to be viewed essentially simultaneously. 
However, images are normally reproduced on low-dynamic-
range displays with a single adaptation level. Figure 6 
illustrates the high-dynamic-range tone-mapping properties 
of iCAM by comparing an original image with a simple 
nonlinear tone mapping with an iCAM-processed image. 
The improved tone-mapping and visibility of highlight and 
shadow details is facilitated by the low-pass dependent 
modulation of the exponents in the IPT transformation. 

Image quality metrics can be derived from image 
difference metrics that are based on normal color difference 
formulas applied to properly spatially-filtered images. This 
approach has been used to successfully predict various types 
of image quality data.14 Figure 7 illustrates the prediction of 
perceived sharpness10 and contrast21 differences in images 
through a single summary statistic (mean image difference). 
This performance is equivalent to, or better than, that 
obtained using other color spaces optimized for the task.14 

 

Figure 6. (a) Linear mapping of a high-dynamic-range image and 
(b )the same image mapped through the iCAM spatial adaptation 
mechanisms. (Both images are gamma corrected in an identical 
manner. Original HDR image from <www.debevec.org>.) 

 

Figure 7. iCAM image differences as a function of (a) perceived 
image contrast and (b) perceived image sharpness for a variety of 
image transformations. (Note: Desired predictions are a v-shaped 
data distributions since the perceptual differences are signed and 
the calculated differences are unsigned.) 

Conclusions 

CIECAM02 represents a significant advance over 
CIECAM97s in terms of performance and simplicity. It will 
certainly be well received and find wide application. 
However, while the improvements in such traditional color 
appearance models might be reaching a plateau, it is 
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becoming apparent that there are opportunities for the 
application of different types of models to other problems 
such as high-dynamic range tone mapping, gamut mapping, 
and image quality measurement. It is in this spirit that the 
iCAM model framework has been developed to supplement 
models such as CIECAM02. 

While the iCAM framework is in place and its 
performance for various tasks is already quite good, there is 
clearly much room for improvement and enhancement 
through the collection and analysis of new types of visual 
image appearance data. The authors expect to spend many 
years working on the refinement and testing of this model 
framework and hope that others will join in the task by 
testing this and other models and generating new types of 
visual data to expand the model’s capabilities. It appears 
that the goal of a relatively simple model capable of 
predicting spatial and color appearance phenomena along 
with measurements of image differences for image quality 
applications might be within reach. Of course, if that goal is 
reached, there will always be the addition of temporal 
phenomena to challenge researchers working on 
applications such as digital cinema. 
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