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Abstract

This paper describes a method for colorimetric color
reproduction on a dye sublimation printer by means of
neural networks. A multilayer feed forward network is
regarded as a nonlinear transformer for color coordinate
transformation between the printer coordinates and the
color stimulus values. The network is trained to learn a
mapping to determine the required CMY (RGB) values
of printer primaries for producing a given XYZ color
stimulus. We adopt the Back-Propagation learning rule
far the training. The mapping is then realized in a simple
network architecture in which nonlinear units are linked
in parallel and in layers. The measured data of many
color patches are used for training the network and
testing the mapping accuracy. The accuracy is evaluated
on the CIE-L*a*b* color difference between the repro-
duced color from the network output and the original
color. We determine an effective network method based
on experiments under different conditions.

Introduction

With the advent of desk-top publishing systems, the color
reproduction of images has become more widespread and
more easily accessible than ever before.1-3 Advances in
color printer technology have been made not only for the
lithographic offset printing, but also for providing various
new printing devices such as thermal transfer dye sublima-
tion and ink jet printers to produce single color prints in a
desk-top computer system. The pigments in printing inks
absorb certain wavelengths from the incident light and so
constitute a subtractive system.

The subtractive color reproduction of print is much
more complicated than the additive system of displays
which is characterized almost completely in terms of
only a few parameters.4 It is difficult to predict from a
knowledge of the individual ink amounts what color
stimulus will be generated on paper. In the case of color
offset printing, there are several methods for estimating
the values of three primary inks of cyan (C), magenta
(M), and yellow (Y) required to produce a given XYZ
color stimulus. These are (1) a classical analysis using
the Neugebauer equation, (2) use of a look-up table and
interpolation, and (3) a neural network method. It has
been pointed out that the first analytical method often has
an inevitable discrepancy between the estimates and the
reproduced results. The second method has the difficulty
in computational speed of the three-dimensional interpo-
lation. The third method is novel. Use of a three layered
network is proposed.5 However there is still no useful

method for accurate color reproduction on recent easy
printers such as dye sublimation and ink jet printers.

The present paper proposes a method for colorimet-
ric color reproduction on a dye sublimation printer by
means of neural networks. A neural network is regarded
as a nonlinear transformer for color coordinate transfor-
mation between the printer coordinates and the corre-
sponding color stimulus values. The network can learn
adaptively an inverse mapping that determines the re-
quired CMY values of printer primaries to reproduce a
given XYZ color stimulus on the printer. We adopt the
Back-Propagation learning rule for training the network.
The mapping is then realized in a simple network archi-
tecture in which nonlinear units are linked in parallel and
in layers. We determine an effective network method for
the mapping from the CIE-XYZ color space to the printer
CMY color space, based on experiments under different
conditions.

Color Printer

The dye sublimation printer used in this study is a Shinko
Electric model CHC-S443 printer. It prints three (CMY)
or four (CMYK) colors at the resolution of 300 dots per
inch. Each color printer primary is expressed in 256
levels (8-bits). Color images are usually expressed in
additive mixture of R, G, and B in a computer. In the
present system the two sets of signals, CMY and RGB
can be converted each other with a simple relation for
opponent color as

R=255-C, G=255-M, B=255-Y. (1)

First, we investigated the stability of the printed
colors. To do this, a uniform color was produced on the
full size of a paper with the same color value, and the
color variation was measured at different parts on the
paper. This color variation was evaluated by the standard
deviation of the CIE L*a*b* color difference. The stan-
dard deviations for three colors R=255, G=255, and B-
255 are, respectively, 0.9, l.0 and 1.3 ∆E*ab units.

Next, the printer gamut were measured from color
charts. The color charts consist of many color patches
which are arranged in even steps in C(R), M(G), and
Y(B) values. These object colors were measured by a
colorimeter under D65. Figure 1 shows the printer gamut
on the CIE chromaticity diagram. The filled diamond at
the center indicates the white point of D65. Furthermore
Figure 2 shows the relationship between the luminance
of the reproduced color on a paper and the input digital
value for each primary. We have no linear relationship.
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Figure 1. Gamut of a dye sublimation printer

Color Conversion

Network Structure
A color printer accepts the CMY digital value as the

input, and generates the corresponding color stimulus as
the output. We need to solve the inverse mapping, that of
finding the CMY values to produce a desired color
stimulus. This mapping is a conversion from the CIE-
XYZ color space onto the printer CMY color space. This
is also equivalent to the conversion from XYZ onto RGB
through the relation (1). For the convenience of color
image representation, we consider the mapping from
XYZ to RGB by means of neural networks.

Figure 3 depicts the structure of a multilayer
feedforward network used in this study. The network
consists of an input layer, two hidden layers, and an
output layer. The circles at nodes indicate processing
units. Every unit sends its output to higher layers than its
own, and receive its input from lower layers than its own.

Figure 2. Relationship between the luminance and the input
digital value for each primary.

Let oi be the output of the unit i in the prior layer, wji
be the weighting coefficient of connection from unit i to
the target unit j, and bj be the bias term of the unit. The
input to unit j is then described as the sum of the weighted
outputs from the prior layer

netj = w jioi + b j
i

∑ (2)

The nonlinear output of unit j is

oj = f(netj) ,  (3)

where f is an activation function. In this study we use the
sigmoidal activation function

f(netj) = 1/{1 + exp(-4α netj)}.  (4)

This function takes any real number in the interval
[0, 1], and the positive constant a represents the slope of
f at net=0. It is noted that this nonlinear operation is not
applied to the units in the output layer. The final output
is the weighted sum of oj = netj .

The number of two hidden layers is determined
empirically. The most effective number of units in the
hidden layers will be discussed later. The knowledge of
mapping from XYZ to RGB color space is stored in the
network in the form of weights in all the connecting
links.

For simplicity we normalize all the input/output
signals of the network. Concerning the input signals, the
tristimulus values are positive, and usually larger than
one. The minimum tristimulus values are fixed at 0.0. So
finding the maxima in the data set, we calculate the
tristimulus values normalized into the interval [0, 1] as

Xn = X/ Xmax Yn = Y/ Ymax  Zn = Z/ Zmax (5)

On the other hand, the RGB values, which lie in the
range 0 to 255, are scaled with Rn = R/(1.1*255), Gn = G/
(1.1*255), and Bn = B/(1.1*255) to fall in [0, 1].

Figure 3. Structure of the neural network

Learning Procedure
Learning is the process of determining a set of

weights and biases that produces a desired response to an
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input color stimulus. We adopt the learning rule of Error
Back-Propagation proposed by Rumelhart, et al.6 The
normalized tristimulus values and the corresponding
normalized printer RGB values are presented as the pairs
of input and output pattern vectors. First the input vector
produces an output vector for the network. This output is
compared with the desired output vector. Next the squared
error is calculated between the actual and desired output.
The weights and biases are then adjusted to reduce the
error based on a gradient method. In the present learning
rule, the error is propagated backward through the net-
work from the output layer to the input layer, in order to
minimize the overall error. For example in the case of a
3-10-10-3 type network, all the parameters to be adjusted
are composed of 160 weights and 23 biases.

Now let us define the pth pair of the normalized
vectors for tristimulus and printer primary values in the
training data set as

ip ≡ [ip1, ip2, ip3] = [Xnp, Ynp, Znp] (6)

tp ≡ [tp1, tp2, tp3] = [Rnp, Gnp, Bnp] (7)

Then the output of each unit in the network is described
as follows:

opj = f(netpj) (j = 1, 2, ..., J)  (8)

netpj = w jiopi + b j ,
i=1

I

∑ (9)

where wji represents a weight from unit i to unit j, and opj
= ipj (j =1,2,3) if the target unit j is at the input layer. The
numbers I and J depend on the layer. The measure of the
error is the squared error between the output vector op
≡[op1, op2, op3] and the target vector.

The learning rule is based on the steepest gradient-
descent method to minimize the error. The rule for
changing the weights is given in the form

∆pWji = ηδpjopi ,  (10)

where η is a positive constant called the learning rate,
and δpj is an error term of the jth component between the
target and actual outputs. This error delta can be com-
puted successively by the following two expressions:

δpj = tpj - oδpj
for the output-layer units, (11)

δpj = 4α opj (1 - opj)
k

∑  δpkwkj

for the hidden-layer units. (12)

The above learning procedure requires only that the
change in weight be proportional to the error derivative.
However this might also result in unstable oscillations. It
is recommended to introduce a momentum term to in-
crease the learning rate without leading to oscillation.
The change of the weight is then given by the form

∆wji(n+l)= ηδpjopi + β∆wji(n), (13)

where n indicates the nth step of learning, and β is a
proportionality constant called the momentum constant.

Experiments

Training
First, we made color charts for the data set of training

the network. Figure 4 shows the grid of the RGB color
space, which is sampled in even steps to cover the entire
range of the printer color space. In all 216 color patches
were produced at every 51 step of each color scale. Next,
the tristimulus values of the printed color patches were
measured by a colorimeter. Certain variations in color
occurs in printing. To remove this influence, color patches
were printed four times in different arrangements on
color charts, and the averages of four measurements were
taken as the training data. Thus, we have a table of the
training data set which consists of 216 pairs of the RGB
and XYZ values.

The networks were simulated on a SUN SPARC
Station. The initial values wij(0) and bj(0) of the weights
and biases are set to random numbers. Training is iter-
ated for as many epochs as are necessary to decrease the
mean squared error to an acceptable level.

Figure 4. Grid of the RGB color space for training data

Testing
Test color charts were made for testing the mapping

accuracy by the network. Each color component of RGB
is sampled at 0, 64, 128, 192, and 255 in the color space.
The number of color samples is 125. A color chart
containing 125 color patches was printed. The measured
XYZ values and the original RGB values constitute the
test data set.

The network outputs the least-square estimate of the
RGB values needed to produce a XYZ color stimulus.
However the RGB values, which are the device depen-
dent coordinates, seem to be not suitable for evaluating
the performance of color reproduction. The performance
should be evaluated on real measurement of the repro-
duced colors. By this reason, we reprinted color patches
from the estimated RGB values, and compared the mea-
sured tristimulus values with the original XYZ values.
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The discrepancy is then calculated using the CIE-L*a*b*
color difference formula. For this calculation the
tristimulus values are transformed into the perceptually
uniform color space of L*a*b*, in which the color differ-
ences between the estimated values and the originals are
calculated as the Euclidean distance. Finally the accu-
racy of color reproduction is represented by an average
color difference over all the test data.

Determining the network structure
In order to determine an effective network structure

and training strategy for the color mapping, we have
carried out the training and testing under different condi-
tions. In a previous paper,7 the author proposed a neural
network method for color notation conversion between
the Munsell and CIE color systems. We discussed an
effective network method from three points of view of
(1) the network structure, (2) the learning constants, and
(3) the data presentation. In the present study on color
reproduction, we have obtained almost the same results
on the second and third points. That is, the learning
constants should be decreased in proper intervals of the
iterative learning process, and the learning data should
be presented in a random order among the given data set.
Concerning the first point, the complexity of a network
structure reflects the complexity of the mapping. In the
following we summarize the results on the first point.

It should be noted that a large network with more
layers and units is not necessarily effective for training
and generalization. If the networks have similar com-
plexity, the performance depends more heavily on the
number of hidden layers than on the number of units. We
have selected the structure of four layers, because no
essential improvement is found for more than five layers.
Next, we have determined the most effective number of
units in the hidden layers. The learning behaviors of the
networks were examined with different numbers of units.

Figure 5 depicts the learning error curves for 3, 5, 8,
and 11 units, where each curve represents the rate of
decrease of the mean squared error on Rn, Gn, and Bn,
with the number of iterative presentations of the data set
(epoches). In these experiments the constant of the sig-
moidal function was set to α = 0.7, and the training data
are presented in a random order among the data set. The
learning rate η and the momentum constant β were
changed adaptively in the iterative learning process. In
fact, in Figure 5 we decrease the coefficients η and β
every 5000 epoches by 0.01 from 0.1 at start to 0.01 at
40000 iterations. It is seen that the learning behavior is
improved with increasing the number of units, so that the
structure of 11 units is the best in speed of convergence.

On the other hand, Figure 6 shows the test results.
The two color differences are plotted as the function of
the number of units in the hidden layers. The upper curve
indicates the variation of the average. The lower is the
variation of the average of the measured L*a*b* values.
The detailed inspection of these curves shows that the
color differences do not decrease monotonically with the
number of units. It is found that both functions nearly
reach the minimums at around 10 units. Thus the four-
layer structure of 3-10-10-3 is chosen as the most effec-
tive system.

Figure 5 . Learning curves with different number of units

Figure 6. Color differences as a function of the number of units
in the testing phase

Accuracy of color reproduction
We have trained a 3-10-10-3 type network by pre-

senting the data in random order, and decreasing the
coefficients at the proper interval, as shown in Figure 6.
The test result provides the best performance ∆E*ab=
2.61 among the present experiments. For the respective
quantities L*, a*, and b*, we have ∆L* = 1.00, ∆a* =
1.35. and ∆b* = 1.52. The reproduction accuracy is better
on lightness. Figure 7 depicts the error distribution for all
the test data in the three-dimensional L*a*b* color space.
Each segment indicates a color difference vector which
links the original coordinates to the estimated ones. In
Figures 7 (a) and (b) the error distribution is projected on
the (a*, b*) plane and the (L*, a*) plane, respectively.
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Figure 7. Distribution of the errors in color reproduction. (a)
(a*, b*) plane, (b) (L*, a*) plane

Conclusion

This paper has proposed a method for colorimetric color
reproduction on a dye sublimation printer by means of
neural networks. A multilayer feedforward network is
regarded as a nonlinear transformer for color coordinate

transformation between the printer coordinates and the
color stimulus values. The network is trained to learn a
mapping to determine the required CMY (RGB) values
of printer primaries for producing a given XYZ color
stimulus.

Many color patches produced on a printer were
measured as the data for training the network and testing
the mapping accuracy. The accuracy is evaluated on the
CIE-L*a*b* color difference between the reproduced
color from the network output and the original color.
Experiments were carried out under different conditions
to determine an effective network method. The present
results show that an effective network structure is a 3-10-
10-3 type. We present the training data to this network in
random order, and decrease the learning coefficients at
proper intervals. This network achieves a good accuracy
for color reproduction on our printer. Thus the compli-
cated mapping from the XYZ to the printer color space is
realized with a compact network with 183 weighting
parameters.
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