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Abstract

An Artificial Neural Network (ANN) with a raw image
Fuzzy pre-processing mechanism system for static col-
ored pattern classification is presented. A computational
three layered feed-forward network utilizing a non-lin-
ear supervised learning paradigm is trained on fuzzily
processed chromatic and achromatic pattern values.
During training, center and bandwidth parameters for the
tunning of antecedents in Fuzzy rules, corresponding to
perceived opponent color categories, are reinforced. These
tunned rules are subsequently used to pre-process raw bit
test patterns before automatic ANN categorization. By
adjusting the opponent primary pairs using the proposed
approximate reasoning methodology in conjunction with
the ANN, partial human-like visual perception charac-
teristics (primarily color constancy, shape constancy and
limited size constancy) are achieved. A particular test
bed application has been chosen to demonstrate the
usefulness of this system in industrial environments,
namely, an automatic visual inspection machine for
mounted SMT (Surface Mount Technology) PCB’s
(Printed Circuit Boards). In this particular application
grey-scale inspection proved ineffective due to similar
tone scale values of PCBs and some miniature compo-
nents. Part existence, orientation and correct terminal
soldering inspection and classification are being per-
formed under real-time, and real environmental con-
straints with high hit rates, and low system training trials.

Introduction

Color Perception
The human eye registers as light stimuli of different

wavelengths, within around 400 and 700 nm, to produce
diferent color sensations. Colored light does not exist but
it is perceived as visible radiation of different wave-
lengths. So color perception partially depends upon the
wavelength of the light received.

Hue, can be defined to be the psychological dimen-
sion that most clearly corresponds to variations in wave-
length The purest color one could get would correspond
to a monochromatic or spectral hue. As we add other
wavelengths, or white light, the color appears to saturate
or “wash out”.

Another important factor, specifically related to the
intuitive quantification of color categories, is that of color
mixtures, namely additive and substractive color mixtures.
Pigments work by substracting or absorbing wavelengths of
light, so mixtures of pigments are called substractive color
mixtures. Light, on the other hand behaves as color additive
mixtures, which are easier to conceptualize.

Helmholtz (1821-1894) and Maxwell (1831-1879)
carried out a set of color matching experiments and
reported that by combining an appropiate set of three
monochromatic light sources in appropiate amounts,
they could match any other hue. These three wavelengths
(small, medium, and large within our visible spectrum)
were to be known as primaries, and relate directly to the
way in which colors are perceived by the retinal cones.

In this proposed system, fuzzy rules are defined that
will produce based on three primary color opponent
processes a subjectively perceived color. Eventhough we
as humans can discriminate, on average, approximately
200 different hues,1 an appropiate scheme to account for
wavelength variations has been implemented using fuzzy
reasoning on perceived colors. A mixed approach to
specify how a particular color sensation might arise,
based on Ewald Hering’s Opponent Process Theory 2 and
Thomas Young’s Trichromatic Color Theory (1802), has
been adopted.

In short, Hering’s theory states that instead of three
primary subjective colors, we have four (including yellow),
and that these are arranged in opposing pairs. A third
opposing pair was suggested to account for brightness
perception. Physiological evidence has supported the fact
that neural responses in the eye are subject to excitatory
and inhibitory influences caused by interaction between
neighboring units. The opposing pairs are given by Red-
Green, Blue-Yellow, and Black-White. They are defined as
opponent processes because we cannot perceive a redish-
green color, or a blueish-yellow (using improper language).

Other schemes have been infered in order to attack
specific problems in pattern recognition like color con-
stancy. Chung et al.3 implement the hypothetical model
introduced by Jameson and Hurvich,4 presenting oppo-
nent Lateral Geniculate Nucleus (LGN) units in an ANN
configuration. They suggest a method for realizing color
constancy by comparing the inputs from the opponent
LGN units in order to identify the spectral reflectance of
visual objects. Another well known study is that of Land
in his “Retinex Theory”,5 and others that have emerged
based on Land’s work. A good number of these studies
have used Hering’s and Young’s theories as basis for their
work, showing for example high orthogonality of spectral
response properties between opponent color processes.6

The Constancies
Objects seen by our visual sense remain in a perma-

nent position despite the fact that their images fluctuate
within our eye (even when staring directly into an object,
human observers execute between three to four eye
movements per second). You feel as though you draw
closer to objects of a fixed size instead of feeling changes
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in the size of the object itself, and objects seem to be the
same color and brightness regardless of the intensity of
the light falling upon it.

Since the physical world does not change as the
light, or our direction of gaze, or our distance from a
target changes, we seem to construct a corresponding
stable world of consciousness eventhough sensory prop-
erties vary. The way in which this stability is created and
maintained revolves around a set of visual phenomena
known as the constancies. There are constancies related
to visual objects, such as their size and shape;7 constancies
related to qualities of those visual objects, such as their
brightness (perceived phenomena that is directly related
to luminance and reflectance) and hue; and constancies
that deal with relationships between visual objects, such
as their position or orientation.

Needless to say our artificial perception systems
lack most of these abilities, hence the enormous diffi-
culty in digital image understanding of real objects.

In general terms these constancies are intrinsic prop-
erties of our visual perception and come about due to
numerous and complex interactions between our senses
and our psychological behavior. These reasons lead us
into the study of the mechanisms that lay behind the
constancies, and that must be understood before we can
completely emulate them.

In this paper an attempt is made to emulate such
properties, by assigning fuzzy membership functions to
respresent subjective primary color categories in accor-
dance to the opponent process theory, thus “extending”
the boundaries of known (in system’s memory) objects in
order to provide some permitted range of comparison
between observed and learned data instead of performing
direct raw pattern matching. Objects within an image can
be slanted, bigger, and even color-hue-different to some
extent, and still be recognized.

Fuzzy Logic

Most of the existent traditional tools for formal modelling,
reasoning, and computing are crisp, deterministic and
precise in characte.r8 That is, binary true-false type rather
than approximate more-or-less type. Precision assumes
that the parameters of a model respresent exactly either
our perception of the phenomenon modelled or the fea-
tures of the real system that has been modelled (i.e. it
contains no ambiguities). It is important to note that:

Real situations are very often not crisp and determin-
istic and they cannot be described precisely by con-
ventional models. The discrepancies between human
perceived sensory information and artificial trans-
ducers 9 are not deterministic in nature, hence no exact
mathematical model can relate both domains.

The complete description of a real system often
would comprise far more information than a human
being could ever recognize simultaneously, process
and understand.

As L. A. Zadeh puts it10: “As the complexity of a
system increases, our ability to make precise and yet

significant statements about our behavior diminishes
until a threshold is reached behond which precision and
significance (or relevance) becomes almost mutually
exclusive characteristics”.

In real situations, uncertainty and vagueness can be
accounted for in a number of ways. Uncertainty can come
from the lack of information about future states of a system,
and it can be handled appropiately (in most cases) by
probabilistic theory and statistics, or it can also be found on
the degree of truth of statements and therefore bases on
logic. On both of these types of probabilistic approaches it
is assummed, however, that the events (elements of sets) or
statements are well defined (stochastic uncertainty).

The vagueness concerning the description of the
semantic meaning of events, statements themselves, is
what is usually called fuzziness.

It is clear that fuzziness can be found in most of our
daily communication using natural languages as well as
in our ways of thinking and behaving.

In order to emulate human behavior, it is necessary to
represent intuition and uncertainty in the know-how, sub-
jective perception of surrounding data, and skills. These
cannot be included in probability but fuzziness. Probabil-
ity is based on the estimation of the degree at which the
event will easily occur, before the occurrence and it is
characterized by a probability density function. Thus the
probability is meaningless after the occurrence. On the
other hand, intuition such as “she is beautiful”, “it is too
hot”, “it is dark red”, etc., includes another type of ambi-
guity which cannot be clear after the occurrence and
depends upon the person. This can be included in Fuzzy
sets (or fuzzy subsets) and characterized by a membership
function.. Fuzzy inference, or approximate reasoning, is a
simulation of decision making of human experts.11

Linguistic terms, whose definitions are not so clear,
are used commonly for easy and effective communica-
tion. Intuitive and vague terms that can be understood by
the common sense assigned by communicating persons,
are very easy to select for practical use, although they
include uncertainties. Linguistic terms can be defined by
a membership function, which indicates a grade of mem-
bership of each element in a fuzzy linguistic term of
interest. These grades of belonging are given by intuition
or common sense, so that the shape of a given member-
ship function varies a little from person to person. Fuzzy
linguistic terms can be defined by membership functions
exhibiting a continuos curve changing between 0 and 1,
where 0 corresponds to no belonging and 1 completely
belongs. The transition region represents a fuzzy bound-
ary of the specific term. Fuzzy sets are defined by labels
(e.g. a little, a lot, and so on) and membership functions.

In mathematical terms, X being a collection of ob-
jects denoted generically by x then the fuzzy set Ã  in X
is a set of ordered pairs:

Ã = x,µÃ(x)( ) xεX{ } (1)

where µÃ(x) is called the membership grade of x in Ã
which maps x to membership space M. When M contains
only points 0 and 1, Ã  is said to be non-fuzzy. Fuzzy
linguistic terms, elements of which are ordered, are fuzzy
intervals. Elements giving grades of membership to be at
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0.5 are crossover points (see Fig. 1), and the interval
between crossover points is the bandwidth of the fuzzy
linguistic term. An interval on the horizontal axis where
the grades of membership are not zero is called support.

Knowledge acquisition and representation
Two mayor fields of study related to information

processing are knowledge acquisition and inference.
Knowledge is usually represented by the relation from
causes to effects in the form of IF-THEN rules.

Knowledge acquisition in human beings is not nec-
essarily achieved by exact matching between input data
and antecedents in the knowledge base. Human beings
can gain a much smaller amount of useful knowledge
from numerous experiences by what has been defined as
a summarization process. Summarization is to cut off the
less important portions from raw information, to empha-
size more important points and to extract the essence of
the information. Summarization process converges many
similar pieces of information obtained from experiences
into one simple piece of information which includes a
very important essence. This in turn also allows us to
store a smaller amount of know-how efficiently. It is also
a significant fact that know-how obtained by summariza-
tion is usually represented by fuzzy linguistic terms.
Otherwise, know-how will be the expression of only one
experience and reduction of it cannot be guaranteed.

Thus knowledge acquisition is based upon summari-
zation and fuzzification, and it is precisely the way data
acquisition and learning are presented to the system
proposed. Both, summarization and fuzzification, are
implicitly considered within this combined fuzzy infer-
ence, and ANN system.

Why Fuzzy Pre-processing?
The approach developed centers on the functional

behavior of the human vision, and not on the hardware/
software replication (brute force) of human visual “trans-
ducers” and brain’s “processor architecture”.

The utility of data for more complex downstream
processing tasks such as clustering and classifier design
can be improved for feature analysis during fuzzy pre-
processing of the “raw” data12.

On the other hand, since human-like behavior is
expected of such a system (positive type behavior of
course!) we need to find ways of expressing information
in a similar manner. Fuzzy theory is one alternative that
can provide us with good tools to tackle the problem. It
not only reduces quantitative representation complexity
(quantification and qualification of knowledge), but also
permits faster modelling of the studied or processed
system characteristics. In general terms:

• Faster and simpler knowledge representation
• Can be tuned to obtain alternate behaviours even

based on intuition (i.e. flexibility)
• It can accept compound information obtained from

incomplete input data and still produce reasonable
conclusions.

• Good ability to interpolate between input-output
relations

Let us assume that each primary color can be defined
by three general hue linguistic categories, namely Dark
(D), Normal (N), and Light (L). Other primaries can be
selected intuitively from the CIE color charts, but in this
case the hardware utilized works directly with near red,
green, and blue frequencies. They are obtained via digi-
talization from an NTSC standard frame signal, indi-
vidually decoded into the four components required (3
chromatic and 1 achromatic).

Figure 1 shows the Fuzzy characteristic function, or
membership function for the antecedent of the IF-THEN
clauses. They represent the fuzzy terms employed to
describe the perceived hue values of the primary colors
and luminance (R,G,B,L).

The dotted lines represent the maximum tolerable
bandwidth of the corresponding label, while the normal
lines correspond to the default settings when the fuzzy-
neural system begins the tuning and training of fuzzy
rules and neural interconnections. The vertical axis,
labelled µ , defines the degree of membership ranging
from 0 to 1, and the horizontal axis the hue value. In the
actual implementation the horizontal axis is defined in a
normalized 0-255 range, in part due to the image capture
board A/D conversion word size (8 bits).

NORMALLIGHT DARK

µ

x

Bandwidth

crossover points

Figure 1. Membership functions primary color hues

Table 1.

    Opponent2
Opponent1 D N L
D AZ MN N
N MP AZ MN
L P MP AZ

Where;

AZ: Around Zero
P: Positive
N: Negative
MN: Medium Negative
MP: Medium Positive

These correspond to the singleton linguistic labels of
the consequent as defined in the cross-reference table 1.
Consider the following fuzzy inference for the red-green
opponent pair:
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Rule No. 1: IF RED=D and GREEN=D
THEN opponent(R,G)=AZ

Rule No. 2: IF RED=D and GREEN= N
THEN opponent(R,G)=MP

Rule No. 3: IF RED=D and GREEN=L
THEN opponent(R,G)=P

Rule No. 4: IF RED= N and GREEN=D
THEN opponent(R,G)=MN

Rule No. 5: IF RED=N and GREEN=N
THEN opponent(R,G)=AZ

Rule No. 6: IF RED=N and GREEN=L
THEN opponent(R,G)=MP

Rule No. 7: IF RED=L and GREEN=D
THEN opponent(R,G)=N

Rule No. 8: IF RED=L and GREEN=N
THEN opponent(R,G)=MN

Rule No. 9: IF RED=L and GREEN=L
THEN opponent(R,G)=AZ

Accordingly, each of the remaining two opponent pro-
cesses (Blue-Yellow, and Black-White) has 9 fuzzy rules
that define its input-output relationship in linguistic
terms. These IF-THEN clauses have a conjunction of two
fuzzy linguistic terms in the antecedent and a singleton
consequent (Figure 2).

The mechanism of fuzzy inference when a fact is
given as a fuzzy value can be obtained by a matching
grade, taking a MAX of MIN of a fact and a fuzzy
variable in an antecedent. The matching is a soft match-
ing.11 In this case we have two variables in each anteced-
ent, and the minimum of their matching grades will be the
matching grade of the antecedent. Individual results for
each antecedent are obtained by truncating a consequent
with the matching grade. Furthermore, the final conclu-
sion can be obtained by ORing these individual results.
In those cases were a crisp output is required by the
system (most practical applications) the Center of Grav-
ity, given by formula (2), can be used as a method to
achieve defuzzification.

C.G = iµ(i)di∫
µ(i)di∫

(2)

for continuous expressions of a membership function,
where (i) is a grade of ith element.

Since the application in hand deals with determinis-
tic values for the inputs and outputs. That is, raw pixel
values are given as inputs so a matching grade is directly
obtained from the grade of a membership function in an
antecedent. And, the final conclusion is obtained by the
Center of Gravity method described by:

C.G =
i

i
µ

i=1

n

∑

i
µ

i=1

n

∑
(3)

Figure 2 shows, singleton labels in solid lines and
triangular functions (not used) in dotted lines. Singletons
where preferred for the consequent since it gives rise to
a linear interpolation between antecedents and conse-
quent17. f(op1,op2) is the function relating the two oppo-

nent pairs selected.
µ

f(op1,op2)

N MN AZ MP P

CONSEQUENT

Figure 2. Consequent given by opponent processes

Artificial Neural Networks

Why NeuroComputing?
When it becomes expensive, or even impossible in

some cases, to determine a systems exact mathematical
model (such is the case with humans visual system), we
cannot easily define it’s input-output relational behavior.
ANNs provide a mean to “learn” and create a systems
characteristic model based on known, or even unknown
(depending on the learning paradigms used), input-output
response pairs. This means, we can treat our eye-brain like
a black box with relatively known perceived behavior to
seen data. In other words we can teach a network how to
behave when confronted with new “unknown” input data
(Physiological, and psychological). All this means is that
ANNs facilitate interpolation between input-output pairs.

Furthermore, any function fe:ℜp → ℜq  where p >= q is
a feature extractor when applied to X. The new features are
the image of X under fe. Hence, Fuzzy Inferencing and
ANN can be considered to be appropiate feature extractors.

Figure 3 shows a typical processing element con-
figuration in ANN. Figure 4 shows a typical feedforward
configuration of an ANN, where f is the transfer function
(usually a sigmoid function) applied to the summation of
aggregate node weight-value products in the network. A
learning paradigm is applied in order to adjust intercon-
nection weights between neurons.

Figure 3. Building blocks of a simple ANN

Learning Algorithm
Most of the best-known learning paradigms13,14,15,16

have been implemented and tested with the combined
fuzzy-ANN system. The best results have been obtained
using a variation of the Backpropagation13 algorithm
described subsequently.
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Figure 4. A typical feedforward ANN

Backpropagation is characterized by inputting data
into the bottom of a multilayer network, then propagat-
ing the information through the network in a feedforward
manner. When the output nodes are computed, their
output is compared to the desired classification of the
input data. The error is then used to compute a correction
for the interconnection weights between network nodes.
The correction is just a gradient descent down an error
surface. The error is backpropagated through the net-
work, correcting the weights. It is not a “natural” algo-
rithm since human networks cannot backpropagate error
and adjust this way but it gives desirable results at low
computational costs in ANN.

Because this algorithm uses a fixed learning constant
and computes the gradient for each individual input vector
as opposed to computing the gradient for the entire set of
training data, the error might not be reduced by successive
iterations. For this reason backpropagation cannot be
proven to converge. As in all gradient descent algorithms
it may get caught in a local minima solution so techniques
like simulated annealing, and random presentation of
input classes have been used to improve its performance.

Learning is performed according to the following
equation:

ij

+ω =
ij

−ω + η
jδ i
χ + α(

ij

−ω −
ij

−−ω ) +
ijm (4)

whereω i j  is the weight from node i to node j in the next
layer, xi is the output of node i, and δj is the error associated
with node j. η  and α  are learning rates. ω i j

+  is the new
weight value andω i j

−  is the old weight value. ω ij
−−  is the

value of the weight before the last update. Thresholds are
adapted similarly where xi is replaced by +1 if the thresh-
old is added to the weighted sum and -1 if it is subtracted.
Finally, a term mij is added to accelerate convergence
since it actuates as a momentum term for the normal
gradient descent backpropagation learning algorithm.

The δ j are defined as follows:

j
y (1 −

j
y )( jd −

j
y ) output node j (5)

δ j  =

jx (1 − jx )
kδk∑ jkω hidden node j (6)

3 inputs/pixel

where dj is the desired output for the output node j and yj
is the actual output. For the hidden nodes the δ j are the
errors for the layers above.

The Implementation

The Fuzzy-Neuro System has been implemented in soft-
ware under an IBM PC compatible platform. It has been
designed as a task driven program that allows for the
application of ANN solutions to almost any appropriate
problem.

Learning and test data can be supplied manually or
automatically. During execution, the network can be
asked for current and past states. Teaching and operating
parameters can be modified at any time in order to
change the behavior of the system. It also includes user
controlled parameters like noise excitation.  The presen-
tation of inputs can be done sequentially or on a random
basis, with simulated annealing implemented to prevent
the local minima problem.

It provides an optimum mechanism for solving “un-
known” input-output system relations. Solutions for logical
and non-logical systems are obtained with relative ease.

A particular module developed for image recognition
permits the ANN to learn fuzzily pre-processed colored
image patterns captured by a CCD camera (as well as MOS
cameras or other type of visual sensor) and then test
different “new” patterns for their categorization. By fuzzily
pre-processing raw bit pixel information based on subjec-
tive human color categories, partial shape, color, and size
constancy have been achieved. A compression of data is
also managed that allows NTSC decoded signals (in their
primary chromatic and achromatic components) to be
treated at 3/4 of their actual storage size.

During training of the ANN, the fuzzy rules corre-
sponding to the opponent color processes are tuned based
on the pixel values of each primary color and luminance.
Label and bandwidth values of the fuzzy rules are ad-
justed according to the training data set, based on the
tought class in the supervized ANN i.e. samples from
class x only affect class x’s fuzzy rules. In this way,
further separation between class patterns can be achieved
permitting faster convergence to an optimum solution
space while training the system. The selected shapes for
the fuzzy rules have been chosen to be the S-function and
the Z-function since the can be easily and rapidly com-
puted, and they can also be combined to form trapezoidal
and triangular functions. It has also been decided this
way because the system might be completely transported
to the hardware domain using a set of Fuzzy chips,
Omron FP9000 and FP9001, that adjust to these specs.17

The fuzzy pre-processing has been implemented in
our proprietary PROLOG-like interpreted language
(Edinburgh format) developed under Borland’s Turbo
Prolog (V2.0) compiler. This language can be appropri-
ately designed to use subjective linguistic terms and
produce deterministic results.

The ANN has been implemented in Borland’s Turbo
C++ (V3.1). Direct memory exchange of data, or by file
handling, between the two environments takes place
within the same package (i.e. data produced by the fuzzy
pre-processing can be directly accessed by the ANN via
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memory, or via files). Network topology can be defined
by the user and network parameters as well. Embedded
learning rules give the user a flexible set of alternatives
when training and testing of the network is requested.

The Specific test bed application
The developed Neuro-Fuzzy System has been tested

for several toy problems mainly dealing with classifica-
tion and binary logic inferences. Furthermore, and as
mentioned earlier it has been proven effective in a real
practical application developed for Kyushu Matsushita
Electric Co.

NTSC Camera

Image CBs

NTSC
Decoder
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B
L

Intel RMX
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i386 Board
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Figure 3. Building blocks of Experimental setup

The application, deals with the inspection of SMT
(Surface Mount Technology) PCBs (Printed Circuit
Boards) in real time. Figure 3. shows the general setup
for processing of images taken from PCBs. With the aid
of an NTSC color CCD camera and four (R,G,B,L) fast
image capture boards controlled by a i386 (or i486 in
future implementations) processor, and an xy position-
ing mechanism, it has been possible to inspect and
classify (good, bad with specific error report) high den-
sity mounted PCBs within the tolerable time constraints.

Inspection is carried out in order to detect the fol-
lowing conditions automatically:

• Existence or non-existence of component
• Location and correct placement of component
• Soldering conditions of terminals in component

The following problems have been considered:

• Grey scale images don’t provide enough informa-
tion and can be ambiguous,

• Conventional image processing techniques are too
computationally expensive for the real-time con-
straints involved,

• Miniature components are extremely difficult to
recognize, in particular when background color seems
to be the same,

• Positioning system must be highly accurate and fast
(Direction constancy),

• Shape, color, and size constancy do not hold true in
artificial image processing. Cameras and computers
do not see what humans see.

• Variations in environmental conditions within in
dustrial sites, (especially light sources) affect image
recognition.

• Dense PCBs increase the complexity.

Results

The implementation has successfully managed to correct
several of these mentioned deficiencies with high hit rates
in the classification of different images. Components can
be different in color hue, slightly rotated over base axis, or
partially viewed (up to 25%, 20%, and 30% respectively).
These characteristics can be adjusted to fit the inspection’s
specifications by manually limiting the fuzzy inferences.

The best result were obtained utilizing a 3 layered
fully interconnected feedforward network with 15-20
hidden layer nodes, a tangential or a sigmoid threshold
function, and the modified backpropagation learning
algorithm. Image size can vary between the different
recognition tasks stated in the previuos section. For
example for existence determination of 5 mm in length
transistors mounted over dark background PCB, a nor-
malized image of 8 × 8 pixels was used (576 inputs to the
ANN, and 2 class outputs - component present or not
present). The results gave a 100% correct classification
rate for under 600 learning trials with an +80% certainty
of class selected. Above 1000 training trials the certainty
of class selected surpassed 93% and in some cases went
up to 98%. The input learning set consisted of raw bit
images, with chromatic (3) and achromatic (1) values for
each pixel, of PCB sections with components mounted
(normally and slanted), components not mounted but
soldering paste applied on the face of the PCB, and with
PCBs not mounted and with no soldering paste applied.
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