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Abstract

The problem of device independent color in color man-
agement systems is abstracted as that of involving a set
of transformations from device space to a reference
space (normalization), reference space to a reference
space (gamut compression), and from reference space to
a device space (rendering). Issues of color management
such as color calibrations, corrections, matching, and
soft proofing can then be addressed in terms of this frame
work.

Pentahedral type multidimensional interpolations
are applied in this paper for both LUT estimation from
calibration data and for color space transformations/
conversions. Efficient discrimination schemes are de-
veloped for locating a point of interest with in a Pentahe-
dral volume. The structure of a decision scheme depend
on its corresponding space partition. Decision schemes
that can be implemented with tree structures are very
fast. Complexity of storage and computations are dis-
cussed for interpolating at a given point. Efficient stor-
age schemes for lookup table contents that permit high
speed color space transformations implementations are
presented. Switching between different types of volume
partitions minimizes the artifacts and maintains the con-
tinuity of the estimated variables.

Methods are also developed in the paper for the esti-
mation of LUTs for transformations between different
devices and color spaces. Pentahedral type multidimen-
sional interpolations and grid search based optimizations
are applied for constructing LUTs from colorometric
calibration data. Pentahedral type formulations provide
unique estimates for inverse problems involving m -> m
variable transformations/conversions. For inverse prob-
lems with n -> m variables transformations, constrained
optimization schemes are developed for estimating LUTs.
Gamut mapping is also addressed in the estimation of
LUTs.

The algorithms are applied for a number of elec-
tronic imaging applications and the evaluation results
are presented.

1. Introduction

Current digital imaging systems1 comprise many cases
of color management and reproduction between different
media. Several manipulations/transformations between
different devices and color spaces are required to achieve
acceptable color reproduction. These involve transfor-
mations from a device space to a reference space, refer-
ence space to a reference space1 (gamut compression)
and from a reference space to a device space (rendering).

The transformations from an input color space to an
output color space can be efficiently implemented using
multidimensional interpolations through LUTs.4,5 The
LUTs are built from colorometric calibration data and
using both forward and inverse modeling. For real time
implementations the transformations need to be very fast
and accurate.

Pentahedral type multidimensional interpolations
are extremely efficient for real time color transforma-
tions. Pentahedral type transformations are applied in
this paper for various problems of color reproduction
including colorometric characterization, gamut mapping
and inverse transformations through LUTs for the repro-
duced media.

2. A frame work for color management

A frame work for device independent color image manage-
ment in color image reproduction is shown in figure 1.
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Figure 1. A general framework for color image reproduction

The images from device dependant input spaces
(rgb) are converted into device independent spaces (xyz).
Image processing and gamut compression are performed
in the device independent space to compensate for the
gamut differences between various devices and to make
desired image corrections/manipulations. The images
are transformed again to output device dependant spaces
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(cmyk) for reproduction. The transformations between
color spaces can be very efficiently performed with
Pentahedral type transformations. The necessary LUTs
are built using colorometric calibration data. Pentahe-
dral type multidimensional interpolations have many
advantages in estimating the optimal inverse LUTs. They
can be very efficiently used in conjunction with grid
search based optimization, thus, avoiding the necessity
of gradient estimation from sparse data. For m -> m
problems they can be used for unique inversion and in the
case of m -> n situations, they can be used to formulate
constrained inversion. They can also be very efficiently
used for gamut compression/transformation.

3. Pentahedral type transformations

Pentahedral type multidimensional interpolations are
discussed in the following for forward and inverse trans-
formations. Decision schemes are developed for the
division of space into Pentahedral type volumes. Effi-
cient storage schemes for fast transformations with par-
allel access are discussed.

3.1 Multidimensional interpolation, forward and in-
verse estimation

Consider two corresponding tetrahedra say one in
rgb space and the other in xyz space. The rgb space is
uniformly gridded and at each of the grid points xyz
values are measured. The corresponding Tetrahedra are
shown in the Figure 2.

The forward or interpolation problem is knowing the
xyz values Xi and rgb values Ri at the vertices i of the
Tetrahedron, estimate the xyz value Xp at a desired point
Rp. Xp is estimated from

Xp = α (X1 - X0) + β (X2 - X0) + υ (X3 − X0 ) + X0

where α, β , and υ αρε coefficients and αρε obtained from

α (R1 - R0) + β (R2 - R0) + υ (R3 − R0) = (Rp − R0).

When Rp lies with in the Tetrahedron α, β, and υ are > =
1, and α + β + υ <= 1. The inverse problem is knowing
the xyz values Xi and rgb values Ri at the vertices i of the

Tetrahedron, estimate the rgb values Rp at a point where
the xyz values are Xp. That is

Rp = α (R1 - R0) + β (R2 - R0) + υ (R3 − R0) + R0

where α, β, and υ αρε coefficients and are obtained from

α (X1 - X0) + β (X2 - X0) + υ (X3 − X0) = (Xp − X0).

3.2. Coefficient tables and decision schemes for dif-
ferent space partitions

There are many ways to divide a space into Pentahe-
dral type partitions. The interpolation coefficients and
the decision schemes for the division of space into
Pentahedral type volumes depend on the type of space
partition. The quality and the continuity of the interpo-
lated surfaces also depend on the type of space division.
Let x1, x2, x3 denote the coordinate axes. For uniform
gridding, let the vertices of a cube are referenced with
respect to some vertex A assumed to be at (0, 0, 0). The
other vertices of the cube are referenced with respect to
its reference vertex and are denoted by B(001), C(011),
D(010), E(100), F(101), G (111), and H(110). If the cube
is partitioned into six partitions, the interpolation coeffi-
cients and the decision scheme to locate a point x3 x2 x1
of the cube in a Tetrahedral partition are as follows.
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Figure 3. Decision structure for six partitions
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Figure 2. Corresponding Tetrahedra
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Similarly if the cube is divided into five partitions,
the interpolation coefficients and decision schemes de-
pend on the type of partition. The decision schemes for
two types of division into 5 partitions are given below.

s=x1+x2+x3     s=(1-x1)+(1-x2)+(1-x3)
if(s>=2) EFHC     if(s >= 2)     ABDE
else if (s<=2x3) EFHA     else if(s<=2(1-x3)) CBDG
else if (s<=2x2)DACH     else if(s<=2(1-x1))  HGED
else if(s<=2x1)BACF     else if(s<=2(1-x2))  FEGB
else HFAC     else BDEG

Type A Type B

Figure 4. Decision structures for five partitions

For both Types A and B, the interpolation coefficient
tables are similar to the ones given in Table 1.

3.3. Efficient storage scheme for fast access
In n - variable to m - variable coordinate transforma-

tions/color corrections, the computational speed can be
considerably increased by organizing the data for paral-
lel access. As before let the coordinate axes are denoted
as xi, i = 0,1, 2, 3. The locations of the sample points
along xi are given by ni(r), r = 0, 1, 2,.., Ni, where Ni is the
number of sample points. The number of sample points
along coordinate axes are assumed equal, that is Ni = N.
The sample intervals along xi are denoted by si(j), j = 0,
1, 2,.., J. For any point {x0, x1, x2, x3} in the coordinate
space, the coordinates xi can be written as follows:

Xi = Ii + fi

 Hi
Ii = Σ si(j)

 j=0
and          Hi = hi + bi

where Ii can be considered an integer part and fi is
considered a fractional part of Xi. Ii consists of Hi + 1
sample intervals and the integer Hi is split into hi and bi,
where bi is binary and takes values 0 or 1. That is bi is a
lower order bit of Hi.

For parallel and high-speed retrieval, the data values
at the sample points are stored in the tables Ti, 0 <= i <=
15, depending on the values of bi such that the binary
representation of i is (b3 b2 b1 b0). With the above scheme,
each vertex of every Pentahedral type partition of the
space lie in a different table and none of the tables
contain more than one vertex of the same partition.

4. Pentahedral type interpolations
for inverse LUT estimation

Pentahedral type multidimensional interpolations can be
very efficiently used for the estimation of inverse LUTs
from colorometric calibration data. In building the in-
verse LUTs for color transformations, the computational
steps are (a) find a Pentahedral type volume of calibra-
tion data that might contain the target or that is closest to
the target, (b) if the target lies within a volume, obtain
inverse estimates by either direct or constrained inversion,
and (c) if the target lies outside the volume of calibration
data gamut compress and obtain inverse estimates either
by direct inversion or constrained inversion. These com-
putational steps are discussed in the following.

4.1. Grid search based optimization
Grid search based optimization using Pentahedral

type interpolations can be very efficiently performed for
locating a Pentahedral type volume either containing the
target or closest to the target and for obtaining the inverse
LUT estimates. The method does not require gradient
estimates from sparse data. The concept is explained
with reference to Figure 5 and Figure 6.
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Figure 5. Input space Grid
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Figure 6. Output functional values

A B C D E F G H
0 ABCG (1-x1) (x1-x2) (x2-x3) x3
1 ABFG (1-x1) (x1-x3) (x3-x2) x2
2 AEFG (1-x3) (x3-x1) x2 (x2-x1)
3 AEHG (1-x3) (x3-x2) (x2-x1) x1
4 ADCG (1-x2) (x1-x3) (x2-x1) x3
5 ADHG (1-x2) (x2-x3) x1 (x3-x1)

Table 1. Interpolation coefficients for six partitions case
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Corresponding to the target T' of the output space,
the point T of the input space is searched as follows.
Estimate b' closest to T' and select a set of matrix points
by space division around b in the input space. Estimate h'
closest to T' and repeat the procedure to locate T.

4.2. Constrained inversion
For m -> m transformations, direct inversion is

discussed in section 3.1. In inverse LUT estimation for
performing m -> n transformations (n > m), constrained
inversion is developed in the following. Figure 7 shows
corresponding Pentahedral volumes say in cmyk and xyz
spaces.
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Figure 7. Corresponding Pentahedral volumes

The problem is given Xi and Ci at the vertices of the
Pentahedran and Xp, the vector of xyz values at which
inverse estimate Cp is required, then estimate Cp by
constrained optimization. Xp might have been the result
of grid search based optimization and gamut compres-
sion. From xyz space we can write

XL W = XR (4.1)

where XL= (X1 - X0 X2 - X0 X3 - X0 X4 - X0 ) and XR=
(Xp - X0). From cmyk space we can write

CL W = CR (4.2)

where CL= (C1 - C0 C2 - C0 C3 - C0 C4 - C0 ) and CR=
(Cp - C0). From equations (4.1) and (4.2), we can write

b α = g (4.3)

where b = XLCL
-1, g = b (C0 - Cr) + Xr, α = Cp - Cr and Cr

is some reference vector. The estimate of Cp can be
formulated as finding Cp such that αTα is minimized
subject to (4.3). The estimate for Cp can be shown to be

Cp = α + Cr (4.4)

 2
where αi = (1/2) Σ λk βki and λk are solved from

k = 0

2
 Σ λk dlk = 2 gl
k = 0

 3
and dlk = Σ bli bki.

 i = 0

4.3. Gamut mapping
If the target lies outside the colorometric data vol-

ume, it is necessary to perform gamut mapping. Since
Pentahedral type space partitions contain planar sur-
faces, gamut projections can be performed by repeatedly
using the computations necessary for projecting a point
on a plane. The intersection Xp of a line projected from
X4 toward X0 with the plane containing non colinear
points X1 , X2, X3 can be estimated from

Xp = η (X0 - X4) + X4

where η = (1 -(a b c) X4) / δ

δ = (a b c)(X0 - X4) and the quantities (a b c) are
estimated from

(a b c) = (1 1 1)(X1 X2 X3)-1.

5. Conclusions

Accurate reproduction of color images require transfor-
mations and conversions between different color spaces
of both device dependant and device independent. Dif-
ferences between the color gamuts of different devices
should be taken into account and it involves gamut
mapping. Pentahedral type interpolations with LUTs
provide very efficient means for performing color trans-
formations. LUTs can be derived from colorometric
calibration data. Grid search based optimization coupled
with Pentahedral type interpolation can be very effi-
ciently used for estimating LUTs. It avoids the necessity
of estimating gradients from sparse data. The estimation
of LUTs for performing m -> n transformations (n > m)
is formulated as a constrained optimization problem.
Pentahedral type space partitions also provide efficient
means for gamut compression. The techniques have been
applied for digital color proofing with excellent repro-
duction quality.
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