
108—IS&T and SID’s Color Imaging Conference: Transforms & Transportability of Color (1993)

Abstract

In digital color printing, printer gamuts are often mod-
eled as functions from CMY space into a device indepen-
dent color space such as CIE XYZ tristimulus values. To
render large raster images across devices, these gamut
functions must be evaluated and inverted very effi-
ciently; such performance can be provided only if the
gamut function is represented as a look-up table, and
evaluated by interpolation. The most common interpola-
tion method uses data on a rectilinear grid, sometimes
based on division of the cells into tetrahedra. It is not
always possible to use a rectilinear scheme: available
gamut measurements may not lie on such a grid, and the
inverse of a gamut function sampled on a rectilinear grid
does not take this form. Based on ideas developed for the
numerical solution of partial differential equations, this
paper develops a general tetrahedral interpolation tech-
nique that works efficiently with nonuniform data. The
technique is shown to extend easily into higher-dimen-
sional spaces.

1. Introduction

To characterize a digital color printer, we calibrate it to
conform to a mathematical model, and characterize it by
adjusting model parameters to match the device’s behav-
ior. We shall model devices as functions from their input
space, such as CMY or RGB, to a device-independent
color space, such as CIE XYZ. The device gamut is then
represented as the range of this function, which we will
often call the gamut function. Rendering images across
different devices requires both evaluation of the devices’
gamut functions, and of their inverses. Although the
gamut functions are only known to us through sampled
measurements, they are typically quite smooth for any
device having acceptable color reproduction.

Raster images for printers today are often as large as
3500 by 3500 pixels, and performance requirements
limit per-pixel computation time to microseconds. It is
difficult to use a sophisticated mathematical model to
approximate the gamut function without sacrificing per-
formance; instead, measured samples of the gamut func-
tion are stored in look-up tables, and interpolated lin-
early at print time. This method is simple enough to be
implemented in printer firmware, a desirable goal for
optimum performance. Rectilinear interpolation, wherein
the sample points lie on a rectilinear grid in device input
space, is very common; we will contrast this method with
a more flexible technique called tetrahedral interpola-
tion, based on dividing the sample space into tetrahedra.

This latter method generalizes to higher dimensional
spaces in a way that is potentially more efficient for
gamut evaluation than rectilinear methods.

1.1 Example
Consider a CMY printer, whose behavior we wish to

characterize in CIE tristimulus XYZ space. One common
approach would be to choose a set of 512 colors (all
combinations of eight values each of C, M, and Y), print
them, and measure them with a colorimeter. This data
now gives us a rough idea of the behavior of the printer
over its entire gamut. The CMY input values we used, if
graphed in CMY space, would appear as a rectilinear grid
— we call this a uniform rectilinear grid if the values are
evenly spaced along each axis so that all the volume
elements are congruent. The XYZ values we measured,
if graphed in XYZ space, would form an irregular cluster
sampling the gamut of the printer. Imagine that there is
a smooth gamut function ƒ : R3 → R3 which models the
printer, taking CMY values to XYZ values. We wish to
evaluate this function for various CMY values, and
evaluate the inverse gamut function ƒ –1 for various XYZ
values. Typically, given a raster image, the gamut func-
tion or its inverse would be evaluated at each pixel, so
efficiency is important.

If we have used evenly-spaced CMY values, one
method of approximating ƒ is apparent: for a given CMY
value x , we can locate the cell of our sample points
containing it by dividing each component by the spacing
interval and truncating, then use multilinear interpola-
tion on the eight XYZ values for the cell vertices to find
the result. We will call this approach uniform rectilinear
interpolation. If we have used unevenly-spaced CMY
values, locating the enclosing cell is harder: often a
binary search is used along each of the C, M, and Y axes;
again, once the cell is found, multilinear interpolation is
used. This is non-uniform rectilinear interpolation.

It is also possible to use a slightly more sophisticated
approach, and imagine each cell divided into tetrahedra:
after locating the cell containing x , we find the sub-
tetrahedron containing x , and then use barycentric inter-
polation on the four XYZ values for the tetrahedron
vertices. We will call this subtetrahedral interpolation.

We could also use a more general technique: if we
first tetrahedrize the CMY sample points, that is, find
tetrahedra that partition their convex hull, we can use
special searching techniques to find the tetrahedron con-
taining x , and use barycentric interpolation immediately
on the four XYZ values at the tetrahedron’s vertices. We
will call this tetrahedral interpolation.

Characterizing Printer Gamuts
Using Tetrahedral Interpolation*

Ian E. Bell and William Cowan
University of Waterloo, Computer Graphics Laboratory, Waterloo, Ontario, Canada

 IS&T and SID’s Color Imaging Conference: Transforms & Transportability of Color (1993)—109

These methods allow us to approximate the gamut
function, given a table of CMY versus XYZ values where
the CMY values lie on a rectilinear grid. Consider now
the problem of approximating the inverse gamut func-
tion, which takes XYZ values to CMY values. No longer
do we have domain points which lie on such a grid. If we
limit ourselves to the ideas above, we really only have
one choice: tetrahedral interpolation. There are other
methods to deal with this issue, including ad hoc search-
ing, or the extrapolation of a rectilinear grid around the
sample points, but we will not discuss them here. Instead,
we will focus on efficient methods of performing tetrahe-
dral interpolation, as it is an appealing general technique.

2. The General Problem

Instead of limiting ourselves to three-dimensional spaces,
from now on we will assume the gamut function ƒ maps
Rm to Rn (formerly CMY-space to XYZ-space in our
example). There are practical problems which require
high-dimensional spaces: black printers add a fourth
dimension, the black ink K; a fifth spot color may be used
for special applications; high-dimensional linear reflec-
tance spaces are of growing interest for illuminant-
independence in gamut-mapping.10, 9

From printer calibration, we are given k sample
points { x l... x k} in Rm (the CMY values printed), and
corresponding function values { y 1 . . . y k } in Rn (the
measured XYZ). Let the total number of sample points be
N = km (512 = 83). We wish to construct a piece-wise
linear approximation of f, f: Rm → Rn, and then evaluate
it for many values x in Rm. In our example, as a prepro-
cessing step, we set up data structures for the CMY
samples (rectangular cells or tetrahedra), and then evalu-
ated the gamut function for an image pixel-by-pixel.

Table 1 shows the general algorithm to interpola-
tion, which we describe below:

 ρ = partition ({ x i});
 FOR EACH x ∈ input image

P = find (ρ , x);
IF P exists THEN

c = interp (P, x);
ŷ = f (MP) c ;

ELSE
ŷ = out-of-gamut (ρ , x);

END IF
output (ŷ);

END FOR

Table 1.General interpolation algorithm

1. ρ = partition ({ x i});
Partition () determines a grid topology for the sample
points, and finds a set of solid polytopes ρ which
decompose the convex hull of the x i such that3:
 • the x i contain only the vertices of each polytope,

and
 • any two polytopes intersect in a facet or not at all.

The partition () function is the preprocessing
step to characterize the printer; it can be carried out

ˆ

overnight on printer samples if it is slow — it is more
important that the subsequent loop in the algorithm
be efficient, as it will likely be performed for every
pixel in an image at print time.

2. P = find(ρ , x);
Find () uses the grid topology to locate the unique
polytope P containing x , or return a null value if
there is none.

3. c = interp (P, x);
Here we express x in terms of the polytope vertices,
so that later we can express y in terms of its sur-
rounding sample points in the range. Interp () solves
for coefficients c so that x = MP c , where MP is the
matrix of vertices of the polytope P, in columns.
This system will always be under-constrained, how-
ever, since the polytope must have at least m + 1
points, and each is an m-vector. The particular
method, such as rectilinear interpolation, will deter-
mine which extra constraints to add.

Applying the gamut function ƒ () to the equa-
tion x = MP c x, we arrive at our linear approximation
ƒ (x) ≈ ƒ (MP) c .

4. ŷ = ƒ (MP) c ;
This is straightforward matrix multiplication — we
have completed the inner loop at this point.

5. ŷ = out-of-gamut (ρ , x);
When a point x is outside the gamut, that is, outside
the convex hull of our sample points, the find ()
function fails to locate an enclosing polytope. Effec-
tively, we are asking to print an unprintable color.
We will assume that the function out-of-gamut ()
takes some appropriate action in this case, and not
address here the difficulties of choosing a “closest”
approximating color from the gamut.

3. Using Rectilinear Interpolation

Recall from our example how we chose a fixed set of
values for C, M, and Y, and used their Cartesian product
as a uniform rectangular sampling of the printer gamut.
Measuring the tristimulus values of each color then gave
us a table associating CMY and XYZ values. Consider
how this approach fits into the general algorithm:

1. ρ = partition ({ x i});
The topology is that of a rectangular lattice. The
structure is implicit: there is no need to store infor-
mation about which cell is next to which. For uni-
form data, we store the starting point and spacing for
each axis; to navigate non-uniform data, we create a
multidimensional array indirectly referencing the
sample values.

2. P = find (ρ , x);
For the uniform case, it only takes one division per
coordinate, and truncation, to decide which cell a
given point x lies in, thus m divisions; for the non-
uniform case, we use binary search along each axis,

110—IS&T and SID’s Color Imaging Conference: Transforms & Transportability of Color (1993)

giving O(m log k) = O(log N) comparisons. In early
computer hardware, floating-point division was far
more costly than comparison, but nowadays they are
comparable — we will not distinguish them in sub-
sequent complexity estimates.

3. c = interp (P, x);
For simplicity, consider the case where m = 3. Trilin-
ear interpolation is used within each cell. Say x lies
in the cell defined by

c0 < x1 < c1 (1)

m0 < x2 < m1 (2)

y0 < x3 < y1 (3)

Then if we let

α1 = (x1 – c0)/(c1 – c0) (4)

α2 = (x2 – m0)/(m1 – m0) (5)

α3 = (x3 – y0)/(y1 – y0) (6)

multilinear interpolation implies that we have

 x = (1 – α1)V0 + α1V1 (7)

 V0 : = (1 – α2)V00 + α2V01 (8)

 V1 : = (1 – α2)V10 + α2V11 (9)

 V00 : = (1 – α3)V000 + α3V001 (10)

 V01 : = (1 – α3)V010 + α3V011 (11)

V10 : = (1 – α3)V100 + α3V101 (12)

 V11 : = (1 – α3)V110 + α3V111 (13)

and where Vrst := [cr,ms,yt], the vertices of the cell. It is
possible to write this in the form x = M c , where M is the
3 × 8 matrix of vertices Vrst (as column vectors), and c is
the rather messy vector of α’s obtained by expanding the
equations above.

For m > 3, each of the m components of c must be
computed as a product of α’s and their complements, as
indicated in the recursive equations. In this example, for
each component, there are 2 + 4 + 8 multiplications; in m
dimensions, there will be

Σ i =1
m 2i = 2m+1 − 2

multiplications. Thus the complexity of interp () for all
m components is O (m2m+1).

4. ŷ = ƒ (MP) c ;
The final step for the interpolation is to apply ƒ to the
above equation, to obtain ƒ (x) ≈ ƒ (M) c , where ƒ
(M) is the matrix of function values at the vertices of
the cell. For each of the n components in the result ŷ ,
a dot product is computed between a row of ƒ (MP)
and c , both 2m-vectors. In total, there are n2m mul-
tiplications.

3.1 Cost of Rectangular Interpolation
The critical steps in the algorithm are those of the

loop, which may be carried out for millions of pixels. For

both uniform and non-uniform cases, find (), with m multi-
plications or O(logN) comparisons, respectively, is domi-
nated by interp () and the evaluation, which require
0((2m+n)2m) multiplications (see Table 2). The worst case
costs are the same as the average costs for this method.

Confining the data points to a uniform rectilinear
grid is a severe restriction: printer gamuts are notorious
for misbehaving in the dark regions, and so despite the
slight-ly greater cost, non-uniform interpolation is pre-
ferred. It would be better still to eliminate the rectilinear
restriction, for then, from arbitrary data sets, we could
approximate the gamut function, or even its inverse. This
is our goal with tetrahedral interpolation.

4. Properties of Tetrahedrizations

Before continuing with the description of subtetrahedral
and tetrahedral interpolation, it is worth discussing some
of the properties of tetrahedrizations.

4.1 Counting Tetrahedra
If we partition the convex hull of { x 1. . . x N} into t

tetrahedra, we may discover that t is impractically large
for our data structures, or some of the tetrahedra are thin
and splintery, causing numerical difficulties. (Note that
in m dimensions an (m + 1)-vertex polytope is usually
called a simplex — we will usually refer to them as
tetrahedra for consistency with the three-dimensional
case.) The numerical problems are reduced by choosing
the Delaunay tetrahedrization of the data, which guaran-
tees that the circumsphere of each tetrahedron encloses
no other data points.2, 7, 3 This yields a worst-case value
for t of O (N m/2), too large for storage; fortunately
random data give an empirical space complexity of O
(N). 7 The expense of tetrahedrization is not crucial,
being part of our partition () preprocessing step.

4.2 Barycentric Coordinates
In R3, imagine joining x to the enclosing tetrahedron’s

vertices to form four small tetrahedra; the volumes of
these as fractions of the large tetrahedron’s volume are
the barycentric coordinates of x . Computing the vol-
umes gives positive values if x is really inside the tetra-
hedron, but gives one or more negative values otherwise,
a prop-erty we will exploit in find (). More commonly,
barycentric coordinates are used for interpolation, as
they express x in terms of the tetrahedron vertices. If
{ x 1... x 4} are the four vertices of the tetrahedron, we
compute the coordinates by solving

x1

1

x 2

1

x 3

1

x 4

1

 c =

x

1

Non-Unif Rect
O(log N)
O(m2m+1)

n2m

O((2m + n)2m

Unif Rect
m

O(m2m+1)
n2m

O((2m + n)2m)

Find()
Interp()
Evaluation
Dominant Term

Table 2. Expected Cost of Rectilinear Interpolation

 IS&T and SID’s Color Imaging Conference: Transforms & Transportability of Color (1993)—111

This computation generalizes easily to m dimen-
sions. Note that the LU-decomposition of the matrix can
be precomputed for each tetrahedron, if there is storage
space, making this only as expensive as backsolving the
system: O(m2) multiplications.

4.3 Finding an Enclosing Tetrahedron
Given a Delaunay tetrahedrization of our data, the

find () operation must locate an enclosing tetrahedron for
a point x . Searching all t tetrahedra is too expensive. We
suggest two alternatives: the walking algorithm, and the
binary space-partitioning (BSP) algorithm.

4.3.1 Walking Algorithm
If x is outside a tetrahedron S, at least one of its

barycentric coordinates relative to S will be negative,
showing that x lies away from the corresponding facet.
The most negative coordinate can be used as likely
direction to proceed to a tetrahedron containing x . Start-
ing from an arbitrary tetrahedron, we can compute
barycentric coordinates, step over the facet with the most
negative coordinate, and repeat; once all coordinates are
positive, we have found the enclosing tetrahedron T. This
technique is often used with tetrahedral meshes in scien-
tific computing.2, 7

This walk will closely follow a straight line from the
initial tetrahedron to T, and thus if the data points are
evenly distributed in m-dimensional space, we expect,
on average, to traverse O (t 1/m) = O (N 1/m) = O (k)
tetrahedra. In the worst case, however, if the data points
fall close to a line, we could traverse all t tetrahedra —
this is most unlikely for the gamut of any useful output
device.

4.3.2 BSP Algorithm
The data structure known as a binary space-parti-

tioning tree is usually used to determine a back-to-front
drawing order for polygons relative to an observer.4, 6

Each polygon is considered to lie in an oriented plane in
space, so points lie before, on, or behind it. A binary tree
is then built with a polygon at each node, so that all left
children of a polygon lie in front of it, and all right
children lie behind it; what is done with polygons in the
same plane depends on the application. Some polygons
may be split by planes intersecting them: each half of the
polygon is then stored separately. It is possible with
simple heuristics5 to order the polygons so that the tree is
fairly balanced, with a height of O(log p), where p is the
number of polygons. Once the tree is built, the region of
space containing the viewpoint can be determined by
checking which half-space the viewpoint lies in at each
node, down a path to a leaf.

We can use this structure with the facets of the tetra-
hedra as polygons; on the leaves of the tree we store
identifiers for the tetrahedra. To find the tetrahedron T
containing x , we compute the dot product with facet
normals at each node, and follow the appropriate branch
down to T; the total path length is O (log t), giving, on
average, O(mlogN) multiplications. The BSP tree will be
O(t) in size, but its computation will be part of the
partition () preprocessing step.

5. Subtetrahedral Interpolation

The main difference between rectilinear interpolation
and subtetrahedral interpolation is that the former uses
rectangular parallelepipeds as cells, and the latter further
subdivides them into tetrahedra.8 In three dimensions,
one can color the vertices of a cube red and black so that
those joined by an edge are different colors. The usual
method of subdivision is into five tetrahedra: four have
one black and three red vertices; the fifth is contained
within the cube, and has all red vertices. Exchanging red
for black and following the same approach gives another
subdivision. Six tetrahedra are created by slicing the
cube vertically through a diagonal of the top facet, and
dividing each of the two resulting prisms into three
tetrahedra.

In higher dimensions, there are also many ways to
subdivide a hypercube into s simplices — computing the
possible numbers of tetrahedra for each m is an open
research problem, but we can give a lower bound. Every
simplex uses up at most m + 1 of the hypercube vertices,
so s is at least 2m/(m + 1) = O(2m) simplices. If we use
Delaunay tetrahedrization on the hypercube vertices, we
expect to have O(2m) simplices from our earlier argu-
ments, so on average, s = O(2m). In the worst case, the
Delaunay method could give s = O ((2m) m / 2) =
O(2m2) simplices, but this shouldn’t occur with a regular
structure like the hypercube—there may be better upper
bounds for s.

The general algorithm proceeds as follows:

1. ρ = partition ({ x i});
Some extra information is needed to identify which
of the two subdivision methods is being used.

2. P = find (ρ , x);
As in rectilinear interpolation, finding the cell takes
m divisions (uniform sampling), or O(log N) com-
parisons (non-uniform sampling).

Unif SubTet
m

O(m2)
O(nm)

O(m(m + n))

Find ()
Interp ()
Evaluation
Dominant Term

Non-Unif SubTet
O(log N)

O(m2)
O(nm)

O(m(m + n))

Table 3. Expected Cost of Subtetrahedral Interpolation

Table 4. Worst-Case Cost of Subtetrahedral Interpolation

Find ()
Interp ()
Evaluation
Dominant Term

Unif SubTet
O(2m2)
O(m2)
O(nm)
O(2m2)

Non-Unif SubTet
O(2m2)
O(m2)
O(nm)
O(2m2)

112—IS&T and SID’s Color Imaging Conference: Transforms & Transportability of Color (1993)

To find the enclosing subtetrahedron, a compli-
cated algorithm like BSP would be overkill; using
the walking method, we expect find () to take O (s1/

m) = O((2m)1/m)= O(1), or constant time. The worst
case imaginable, walking through all tetrahedra when
their number is maximal, is O(s) = O(2m2), but is
highly unlikely. We conclude that finding the cell
dominates.

3. c = interp (P, x);
We interpolate with barycentric coordinates, as de-
scribed earlier, using O(m2) multiplications.

4. ŷ = ƒ (MP) c ;
For each of the n components in the result ŷ , there is
a dot product of a row of ƒ (MP) and c , both (m + 1)-
vectors in this case. In total, there are n(m + 1) =
O(nm) multiplications.

5.1 Cost of Subtetrahedral Interpolation
As with rectilinear interpolation, interp () and evalu-

ation dominate, but the small number of vertices in a
tetrahedron reduces the complexity to give O(m2)+O(nm)
= O(m(m + n)) multiplications on average (see Table 3
and Table 4). In the worst-case scenario, find () may
dominate with O(2m2). We have not found a simple
tetrahedrization of the hypercube which would reduce
this estimate.

This idea avoids the expense of rectilinear interp (),
but since characterization measurements are noisy, inter-
polating fewer data points may sacrifice accuracy. (One
would prefer to smooth the data to conform more closely
to the true gamut — this is the subject of our current
research.1) For m = 3, it is not much more difficult to
implement than rectangular interpolation, and yet runs
faster, so this technique has become quite popular. The
restriction of hav- ing rectilinear sample points remains.

6. Tetrahedral Interpolation

For tetrahedral interpolation, we require no particular
topology of the samples, except non-degeneracy as it
applies to the chosen tetrahedrization algorithm.2,7

1. ρ = partition ({ x i});
The partition () function uses the Delaunay
tetrahedrization, and builds a data structure to deter-
mine the neighbors of a tetrahedron, plus LU-de-
compositions for the barycentric coordinates, and if
using the BSP method, the BSP tree and facet normals.

2. P = find(ρ , x);
We walk, in O(N1/m) multiplications, or use the BSP
method for O(MlogN) multiplications. In the worst
case, we have maximal numbers of tetrahedra, t =
O(N m / 2): we may walk them all, O(N m / 2);
BSP gives O(mlogN m / 2).

3. c = interp(P, x);
Interp(), as we have shown before, requires finding
the barycentric coordinates of x in P. With the walk-
ing algorithm, we have already performed this com-
putation in find(); with BSP, O(m2) multiplications
are needed.

4. ŷ = ƒ (MP) c ;
As in subtetrahedral interpolation, we require O(nm)
multiplications.

6.1 Cost of Tetrahedral Interpolation
For tetrahedral interpolation, find () dominates with

the expected O(N1/m) (walking), or O(m log N (BSP)
multiplications; in the worst case it also dominates with
O(N m / 2)(walking), or O(m logN m / 2). (BSP) (see
Table 5 and Table 6).

Our analysis indicates that this method is usually
more expensive than rectilinear or subtetrahedral inter-
polation, but competitive for large m. Given that it
requires no special structure of the sample points, and
can be used to approximate the gamut function and the
inverse gamut function, we believe it has good potential
for certain gamut-mapping applications.

TetWalk

O (N1/m)

O

O(nm)
O(N1/m)

Find ()

Interp ()
Evaluation

Dominant Term

TetBSP

0(mlogN)

O(m2)

O(nm)
O(mlogN)

Table 5. Expected Cost of Tetrahedral Interpolation

TetWalk

O (N m / 2)
O

O(nm)

O(N m / 2)

Find ()
Interp ()

Evaluation

Dominant Term

TetBSP

0(mlogN m / 2)
O(m2)

O(nm)

O(mlogN m / 2)

Table 6. Worst-Case Cost of Tetrahedral Interpolation

N
1000
1000
1000
1000
1000
1000
4000
4000
4000
4000
4000
4000

n

3
4
5
3
4
3
3
4
5
3
4
3

Rect
(2m + n)2m

72
80
88

176
192
416
72
80
88

176
192
416

m

3
3
3
4
4
5
3
3
3
4
4
5

TetBSP
m log N

21
21
21
28
28
35
25
25
25
33
33
41

TetWalk
N1/m

10
10
10
6
6
4

16
16
16
8
8
5

SubTet
m(m + n)

18
21
24
28
32
40
18
21
24
28
32
40

Table 7. Evaluation of dominant terms for typical param-
eter values (rounded to integers).

 IS&T and SID’s Color Imaging Conference: Transforms & Transportability of Color (1993)—113

7. Comparison of All Methods

Table 7 evaluates the expected dominant term for typical
values of N, m and n. This is not intended to represent
execution times, as there are many other factors in-
volved, but serves only to depict rough trends in the
magnitudes.

We are currently implementing these methods to
determine realistic empirical data. It is apparent, how-
ever, from this table, that we should not expect tetrahe-
dral interpolation time to increase enormously with in-
creases in dimension: the walking method actually de-
creases with increasing m. If we evaluate the worst-case
complexities, this method and the subtetrahedral method
grow excessively; only the rectilinear and tetrahedral-
BSP algorithms appear practical. Experimentation will
give the final verdict.

8. Conclusions

We are interested in high-dimensional linear representa-
tions of reflectance; this has led us to consider the prob-
lems inherent in high-dimensional interpolation of printer
calibration data. Rectilinear and subtetrahedral methods
restrict the form of the calibration data, and slow down
with increasing dimensionality; however, in three di-
mensions, they are efficient and easy to implement.

Tetrahedral interpolation is extremely appealing be-
cause it does not require data on a rectilinear grid. Its
disadvantages include the need for a tetrahedrization
algorithm and a neighbor data structure, high prepro-
cessing time, and the potential for expensive worst-case
scenarios. The walking and BSP methods for find () make
the algorithm competitive for typical sizes of gamut
problems. Note, however, that we have not addressed the
expense of the out-of-gamut () function: in real applica-
tions, the cost of this function is considerable, and has a
great effect on the quality of image reproduction.

Calibration data is measured, and therefore noisy.
Our related work now concentrates on smoothing out the
noise using spline functions over both rectilinear and
tetrahedral topologies. This will give compact and smooth
gamut representations, and will probably prove even

more effective than the interpolation techniques de-
scribed here.

9. Acknowledgments

The authors thank Anna Lubiw for her combinatorial insight;
Bruce Simpson, Adrian Bowyer, and Barry Joe for information
and software related to k-dimensional tetrahedrizations.

References

1. Ian E. Bell. Algorithms for the creation of gamut mapping
transformations based on reflective image representations.
Ph.D. thesis (in preparation), University of Waterloo Com-
puter Graphics Laboratory.

2. A. Bowyer. Computing dirichlet tessellations. The Com-
puter Journal, 24(2):162-166, 1981. dirichlet tessellations.

3. N. Edelsbrunner, F. P. Preparata, and D. B. West. Tetrahed-
rizing point sets in three dimensions. J. Symbolic Computa-
tion, 10:335-347, 1990.

4. James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer Graphics Principles and Prac-
tice. Addison-Wesley, 2nd edition, 1990.

5. H. Fuchs, G. D. Abram, and E. D. Grant. Near real-time
shaded display of rigid objects. Computer Graphics, pages
65-72, 1983.

6. H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface
generation by a priori tree structures. Computer Graphics,
pages 124-133, 1980.

7. Barry Joe. Construction of k-dimensional delaunay triangu-
lations using local transformations (to-appear). SIAM J.
Sci. Comput., 14, November ,1993.

8. Katsuhiro Kanamori, Hidehiko Kawakami, and Hiroaki
Kotera. A novel color transformation algorithm and its
applications. In SPIE Image Processing Algorithms and
Technique, volume 1244, pages 272-281, 1990.

9. Laurence T. Maloney and Brian A. Wandell. Color con-
stancy: A method for recovering surface spectral reflec-
tance. Journal of the Optical Society of America A, 3(1):29-
33, January, 1986.

 10. Brian A. Wandell. The synthesis and analysis of color
images. IEEE Transactions of Pattern Analysis and Ma-
chine Intelligence, 9(1):2-13, January ,1987.

* This research is supported in part by the Natural Sciences
and Engineering Research Council of Canada; Ian Bell
thanks Xerox Corporation for financial support.

