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Abstract

We discuss the relation between the color of a Xerographic
image and the color of the individual toners (or pigments
and binder) making up the image. We analyze the dielectric
constant of the composite image in terms of those of the
constituent colored toners via the use of static effective
medium theories (EMTs). One application of EMT is to
predict the color of toner as a function of varying pigment
loading. Another application is to predict the color of an
image as a function of amount of cyan, magenta, yellow,
and black toner, i.e., color mixing laws. We show that
different color mixing laws result for different pigment
microgeometries in the color image. Variational bounds are
able to limit the range of average image color obtain-
able for fixed amounts of color toners.

Introduction

In color Xerography an image may be composed of up to
four types of color toner: cyan, magenta, yellow, and
black. Each color toner is a composite, consisting of colored
pigment suspended in a transparent binder. These four color
toners are applied sequentially to surfaces, the photorecep-
tor, intermediate transfer belt, and ultimately paper. If the
development, transfer, and fusing steps are sufficiently
gentle the resulting multilayered image on paper may con-
sist of segregated layers of fused monocolor toner. If, on the
other hand, these process steps are disruptive to          the
colored toner layers, a randomized color image will result.
The degree of randomization may vary continuously, from
almost none, resulting in a layered image, to almost com-
plete, resulting in a random composite image. The degree of
mixing may depend not only on the nature of the machine
process steps, but also on the type of paper on which the
final image is formed. Coated papers are found to result in
more lammelar color images than uncoated papers.

Both extremes in color images, randomly mixed and
lammelar, can be obtained with Xerographic color ma-
chines currently commercially available or in development.
In the present report we concentrate on the color of ran-
domly disordered color images. (i.e., images in which the
color toners at any point are randomly disordered spatially).

In such randomly disordered images, the overall
image color will be determined by the percent of each
toner present, and by the optical constants of those
toners. Optics does not tell us how to relate the compo-
sition of a composite image layer and the dielectric
constants of the constituent toners (or equivalently,
the optical constants of pigments and binder) to average
values which describe the overall optical properties of
the image layer. These parameters must be obtained from
other theories. We use effective medium theory to
evaluate average optical parameters for use in calcu-
lating color.

The goal of effective medium theory (EMT) is to
predict the average of a materials parameter (in this case, the
complex dielectric constant) of a composite system in terms
of the values of that parameter for each of the components
of the composite. The basic approximation in EMT is to
replace the composite image composed of particles (unfused
toners) or domains (fused toner remnants) of different
absorptive and refractive properties by a single medium
whose average refractive and absorptive parameters are
determined in a predictable way by those of the compo-
nents of the composite system. Thus, EMT is not a
theory of optical scattering, rather it is a theory which
indicates how the parameters in optics calculations (or other
calculations) for composite systems are related to those of
the component parts.

The EMTs used to provide color mixing models
were derived for static (infinite wavelength or zero fre-
quency) properties via arguments involving spatially
averaging electric fields. However, in color science we
are interested in the frequency dependent complex di-
electric constant ε(ω), where ω is 2n times the frequency
of the light, or equivalently in the wavelength dependent
ε(λ). The static arguments used in deriving EMTs can be
applied to the dynamic dielectric properties of compos-
ites, e.g., ε(ω) or ε(λ), as long as a quasistatic criterion
is satisfied [Lozovik and Klyuchnik1] requiring that the
size of inclusions or domains to be averaged is small
compared to the wavelength, λ, of light. In Xerographic
toners pigment diameters range from approximately 20nm
to 800nm, with volume-averaged diameters falling at
approximately 80-150nm [Paine, Stone, Hooper,
Gerroir2]. The visible light band covers the range from
380nm to 700 nm. Thus, the quasistatic approximation is
approximately satisfied, and the predictions of static
EMTs should be good approximations.

In this paper we analyze color as a function of the
relevant material parameters of pigment and binder and    the
microgeometry of pigment in the image. We first discuss
the reflectivity of a single-layer color image within the
context of the Williams-Clapper3 reflectivity model. We
then show how parameters in the Williams-Clapper model
can be obtained by effective medium theory. Applications
to both toner color as a function of pigment loading, and
color mixing laws for varying amounts of colored toners in
color images are discussed.

Image Reflectivity

Color is determined by the wavelength dependence of
reflectivity [Billmeyer and Saltzman4] of the image. The
wavelength dependence of the reflection coefficient, and
hence the color, in the present model is due to the wave-
length dependencies of the complex index of refraction of
the pigments, binder, and to the wavelength dependence of
paper reflectivity. The reflectivity of single-layer color
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images on a paper substrate has been calculated by Will-
iams and Clapper3 as

R(λ) =
Tair− image (θ1,θ2 )t image

1+sec(θ2)
Rpaper (λ) Timage−air (0,0)

1+ Rpaper (λ) ∫ dΩ3 t image
2sec(θ3)

Rimage−air (θ3,θ3 )

(1)
where θ1 is the angle of incidence of light on the color
image, θ2 is the angle of light after specular transmission
through the surface layer (which is assumed to be smooth).
Light is assumed to exit the image normal to the surface.
Rimage-air is the specular reflection coefficient of the image-
air interface for light inside the color image. Tair-image is the
specular transmission coefficient of the image surface.
These optical coefficients are given in terms of image
dielectric constants or indices of refraction by standard
optics texts [Born and Wolf5]. Rpaper is the diffuse reflection
coefficient of the paper surface, which is assumed to be a
Lambertian reflector. The image layer transmission at nor-
mal incidence, timage, is given by [Born and Wolf5]

t image = exp( − 4πv2h

λ
), (2)

where λ is the wavelength of the light, and h is the thickness
of the toner layer.

The parameter v2 is related to the complex dielectric
constant ε2 in the absorbing toner layer by

v
2
4 + v

2
2 (ε

2R
− sin2 θ1)

1

4
ε

21
2 = 0, (3)

where ε2R is the real part of the complex dielectric constant
of the imageε2 and ε21 is the imaginary part of the complex
dielectric constant. The complex index of refraction, n2, of
the image is related to the complex dielectric constant by

n2 = (µ2ε2 ) , (4)

where µ2 is the average magnetic permitivity of the image.
All of the color information within this single layer

model is contained in the parameter v2 through the effective
complex dielectric constant ε2(λ) of the image layer, and
through Rpaper(λ)

Effective Medium Theory

EMT is a continuum theory; it replaces a complex multi-
component medium which fills all of space with a single
averaged material which also fills all of space. Edge effects
are not considered. Thus, in the strictest sense, the use of
EMT is limited to the analysis of solid area calculations.

There are several EMTs available in the literature,
each of which predicts a different value for the average
properties of a composite material in terms of those of the
constituents [see Barrera, et al.;6 for citations of recent
literature]. Thus, there is no a priori prediction of the
average optical properties of a colored image. These
theories differ in their assumptions regarding the
microgeometry of the composite.

Two of these models can be applied in a natural manner
to Xerographic color images. The first of these effective

medium theories is due to Maxwell Garnett.7,8 Maxwell
Garnett (MG) theory assumes a structure with separate
particles embedded in a continuous matrix or binder. This
microgeometry (for a single type of particulate inclusion) is
appropriately applied in color Xerography to modeling
toner as a composite composed of pigment particles sus-
pended randomly in a polymer binder. For single colored
pigment particles in a binder, this results in a continuum
model for the optical properties of colored toner.

The single inclusion MG analysis results in the follow-
ing expression for the average complex dielectric constant
for the composite [Garnett,7,8]

εMG = εm
3f1ε1 + (1− f1)(2εm + ε1)

3f1εm + (1− f1)(2εm + ε1)
, (5)

where εm and ε1 are the frequency-dependant complex
dielectric functions of the matrix (or host or binder) and
inclusions (e.g., pigment), respectively, and fi is the vol-
ume fraction of inclusion i. This theory is not symmetrical
with interchange of inclusion and matrix material.

Each individual type of colored toner (C, M, Y, K) is a
composite material, consisting of a mixture of the bind-er
polymer, pigment, magnetite, carbon black, charge control
agents, lubricants, etc. Given the pigment and binder com-
plex dielectric constants, the optical properties of each
colored toner (C, M, Y, K) be modeled using MG EMT in
terms of the pigment loading and dispersion.

For a fused multicolor image, the multicomponent (n >
2) version of MG EMT [Wang and Wu9] can be used to
predict the average complex dielectric constant of the
composite image, assuming that pigments have been ran-
domly distributed throughout the image in the fusing pro-
cess. In the later application, this gives a color mixing
model. This analysis gives where εm is

εMG = (1− ∑ i f i )εm + ∑ i [3f iε iεm / (ε i + 2εm )]

(1− ∑ i f i )+ ∑ i [3f iεm / (ε i + 2εm )]
, (6)

the dielectric constant of the matrix material, and the εi are
the dielectric constants of the n types of inclusions. The fi
are volume fractions of the i-th type of inclusion. All sums
in Eq. (6) are from i = 1 to 4, the number of colored pigments
in the image.

The use of multicomponent MG EMT, Eq. (6), for the
effective image complex dielectric constant is equivalent to
choosing a color mixing model. The MG color mixing
model is only appropriate for microgeometries consistent
with randomly distributed pigments in a percolating binder.
The color mixing model which results from Eq. (6) is
pigment-based, because it is assumed that each color pig-
ment is randomly distributed throughout the image. The
identity of individual toner particles in the fused image is
assumed to be lost. This microgeometry does not appear to
be appropriate for present Xerographic color fusers. How-
ever, the effects of building fusers with this property can be
predicted by the model.

The second EMT of Xerographic interest is due to
Bruggeman.10  Bruggeman (BR) EMT is designed to model
an aggregate structure in which domains of geometrically
similar components form the aggregate. There is no distin-
guishable host and inclusion. The best application of the
Bruggeman EMT in xerography is to the case of fused color
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solid area images. All of the different color toner remnant
domains are treated on the same footing, there is not a need
to view one color or component (e.g. binder) as a percolat-
ing matrix, as in MG theory.

The Bruggeman effective dielectric function for a two
component system is obtained by solving the quadratic
equation for εBr, which is obtained from

3f1

2 + ε1
εBr

+ 3(1− f1)

2 + ε2
εBr

= 1. (7)

where ε2 and ε1 are the frequency-dependant complex
dielectric functions of the host (or matrix or binder) and
inclusions, respectively, and fi is the volume fraction of
material i.

The Bruggeman model treats the host and inclusions on
an equal basis (which the MG theory does not), as can be
seen by noting that the effective dielectric constant expres-
sion [Eq. (7)] is symmetrical with respect to interchange of
indices 1 and 2. This symmetric expression corresponds to
a topology of spheres of both types of inclusions embedded
self-consistently in the effective medium.

Eq. (7) reduces to [Landauer11]

          εBr = 1
4

[γ + (γ 2 + 8ε1ε2 )
1

2 ]  (8)

where
γ = (3f 2 −1)ε2 + (3f1 −1)ε1. (9)

The Bruggeman model can also be used to predict the
complex dielectric constant of toner as a function of pig-
ment loading, just as the MG model. For low loading, as is
usually the case in Xerographic color toners, the Bruggeman
result reduces to the MG result.

There are multicomponent (n>2) versions of the
Bruggeman result for the complex dielectric constant, just
as there are for the Maxwell Garnett theory [Wang and
Wu9]. The effective dielectric constant, εBr, satisfies the
equation

∑ i

fi (εBr − ε i )

2εBr + ε i

= 0 , (10)

where fi is the volume fraction of material i, where the sum
extends from i=1 to n for a ncomponent composite. Typi-
cally n=4 for a four color image, although residual air in an
image may be included as a fifth component. Eq. (10) must
be solved for each different n-case. The solutions diverges
if one of the fi’s is zero.

The solution to Eq. (10) for εBr provides another color
mixing model which will be different from the multicompo-
nent MG EMT. The Br result, the solution to Eq. (10),
assumes randomly distributed toner particles within the
color image. Hence, the εi ’s in Eq. (10) are toner dielectric
constants. The MG EMT result, Eq. (6) assumes randomly
distributed pigments within the color image. Thus, the
microgeometry of the image dictates the color mixing law
through the appropriate EMT.

The color mixing model which results from the
Bruggeman model through solution of Eq. (10) is toner-
based, in that the image is composed of different colored
domains resulting from fused individual toner particles.

If the properties of pigments and binder are known, the
properties of toners can be calculated via the single-inclu-
sion Maxwell Garnett model, Eq. (5). The dielectric con-
stants of these colored toners can then be used in the
Bruggeman model to predict the composite image color.

There are several similar EMT theories available in the
literature, each of which predicts a different value for the
average properties of a composite material in terms of those
of the same constituents [see Barrera, et al.;6 for citations of
recent literature]. Thus, there is no a priori prediction of the
average optical properties of a colored image. These theo-
ries differ in their assumptions regarding the microgeometry
of the composite, in the size of the particles relative to that
of the light being transmitted, or in the degree of random-
ness in the inclusion dispersion. A range of values for
average optical properties can be obtained, depending on
the geometrical assumptions made.

However, even though a range of values for the
average complex dielectric constant can be obtained
from those of the constituents depending on the
microgeometry assumed, these average values are re-
stricted. It is shown by a number of authors [see 1 for
references)] that variational bounds can be formulated
which enclose these EMT complex dielectric constant
values. The Wiener12 bounds do not make assumptions
with regards to the optical isotropy of the image, and so
are the most general. These bounds are given by

εReuss = Σ i
fi
ε i

≤ εeff ≤ Σ i fi ε i = εViogt . (11)

The lower Wiener bound is called the Reuss limit, and
corresponds to the effective dielectric constant for fields
perpendicular to a series of layers of optically isotropic
material. The upper Wiener bound is called the Voigt limit,
and corresponds to the effective dielectric constant perpen-
dicular to a set of random side-by-side patches of optically
isotropic material. These are rigorous bounds on the differ-
ences between the complex dielectric constants produced
by different microgeometries, and hence by different EMTs.
Thus, only colors over a restricted range can be produced in
a disordered multicolor image.

We now have two expressions for the dielectric con-
stants of toner as a function of pigment loading, Eq. (5) from
MG theory, and Eq. (8) from Bruggeman theory. In the talk
we compare the predictions of these models for color as a
function of pigment loading for some commercially avail-
able color pigments.

We also have four expressions for the effective dielec-
tric constant of a multicolor mixture, which can act as color
mixing laws when used in conjunction with the Williams-
Clapper reflectivity equation, Eq. (1) and the v2 expression,
Eq. (3). These color mixing laws are the Maxwell Garnett
expression, Eq. (6), the Bruggeman expression, which is the
solution to Eq. (10), and the Reuss and Voigt limits, given
by Eq. (11). In the talk we compare the colors predicted by
the use of these different EMTs or color mixing models for
images formed from commercial color toners. We find
that the Voigt limit on EMT dielectric constants gives the
best agreement with color data. However, the difference
between the colors predicted by the four EMTs is not
great, indicating that color is not very sensitive to the
microgeometry of pigment in the color image.
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