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Color Mixing Theory

Roughly speaking, there are two kinds of the color
mixing theories. One is formulated for the halftone print-
ing process such as the Neugebauer equations (NE),
Yule-Neilsen approximation (YN), and Clapper-Yule
multiple internal reflections (CY). The other is based on
the subtractive principle such as the Beer-Bouguer law
(BB) for the homogeneous medium and the Kubelka-
Munk theories (KM)  for the turbid medium. In addition,
we present an empiri-cal extension of the subtractive
models for the halftone printings. We compare these
models by applying them to a Canon color copier and an
ink jet printer. Brief descrip-tions of these theories with
regard to the basic assumptions, formulations, and com-
parison results, are given in this paper. The emphasis of
this study is placed on the spectral modeling of the
halftone prints.

Neugebauer equations
The Neugebauer model perhaps is the first attempt to

mathematically account for the halftone printing. It is based
on broad-band color mixing. Neugebauer recognized that
there are eight colors—namely, white, cyan, magenta, yel-
low, red, green, blue, and black—for constituting any color
halftone prints. A given color is perceived as the integration
of subtractive primary colors and their 2-color and 3-color
overlaps. The incident light reflected by one of the eight
colors is equal to the reflectance of that color multiplied by
its area coverage. The total reflectance is the sum of all eight
colors weighed by the area.1,2 An example of a 3-color
Neugebauer equation is

G = Aw Gw + Ac Gc + Am Gm + Ay Gy + Ar Gmy + Ag Gcy
+ Ab Gcm + Acmy Gcmy (1)

where G = the total green reflectance
Gw = the reflectance of the paper measured with

green light
Gc = the reflectance of the cyan ink measured with

green light
Gm = the reflectance of the magenta ink measured

with green light
Gy = the reflectance of the yellow ink measured

with green light
Gmy = the reflectance of the magenta and yellow

overlap measured with green light
Gcy = the reflectance of the cyan and yellow overlap

measured with green light
Gcm = the reflectance of the cyan and magenta over

lap measured with green light
Gcmy= the reflectance or of the 3-color overlap mea-

sured with green light
Aw = (1-ac) (1-am) (1-ay)

Ac = ac ( 1 -am) ( 1 -ay)
Am = am (1-ac) (1-ay )
Ay = ay (1-ac) (1-am)
Ar = am ay (l-ac)
Ag = ac ay (1-am)
Ab = ac am (1-ay)
Acmy= ac am ay
ac = the single component area of the cyan ink
am = the single component area of the magenta ink
ay = the single component area of the yellow ink

By assuming that the ink densities are additive (Beer’s
law), the reflectance of an ink mixture becomes the product
of the reflectance of its components, for example, Gcmy =  Gc
Gm Gy. Substituting this expression into Eq. (1),we get

G = Aw Gw + Ac Gc + Am Gm + Ay Gy + Ar Gm Gy + Ag Gc
Gy + Ab Gc Gm + Acmy Gc GmGy

Similar expressions can be obtained for red and blue.
If we replace the broad-band light of a primary color

with a narrow spectral radiation for measuring the reflec-
tance, we obtain the spectral Neugebauer equation

R(λ) = AwRw(λ) + AcRc(λ) + AmRm(λ) + AyRy(λ) +
ArRm(λ)Ry(λ) + AgRc(λ)Ry(λ) +
AbRc(λ) Rm(λ) + AcmyRc(λ) Rm(λ) Ry(λ)

where R(λ) = the spectral reflectance of  the mixed inks at
wavelength λ.

The 3-color expression can readily be expanded to four
colors by employing the 4-color fractional area expressions
given by Hardy and Wurzburg.3

R(λ) = A’wRw(λ) + A’cRc(λ) + A’mRm(λ) + A’yRy(λ)
+ A’rRm (λ)Ry(λ) + A’gRc(λ)Ry(λ)
+ A’bRc(λ)Rm(λ)  + A’cmyRc(λ)Rm(λ)Ry(λ)
+ A’kRk(λ)  + A’ckRc(λ)Rk(λ) + A’mkRm(λ)Rk(λ)
+A’ykRy (λ)Rk(λ) + A’rkRm(λ)Ry(λ)Rk(λ)
+ A’gkRc(λ)Ry(λ)Rk(λ) + A’bkRc(λ)Rm(λ) Rk(λ)
+ A’cmykRc(λ)Rm(λ)Ry(λ)Rk(λ)

where A’w = (1-ac) (1-am) (1-ay)(1-ak)
A’c = ac(1-am)(l-ay)(1-ak)
A’m = am(1-ac) (1-ay) (1-ak)
A’y = ay(1 -ac)(1 -am) (1 -ak)
A’r = amay(1-ac) (1-ak)
A’g = acay (1 -am) (1 -ak)
A’b = acam(1-ay) (l-ak)
A’cmy = acamay (1 -ak)
A’k = ak(1 -ac) (1 -am) (1 -ay)
A’ck = acak (1-am) (1-ay)
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A’mk = amak(1 -ac) (1 -ay)
A’yk = ayak(1 -ac)(1 -am)
A’rk = amayak(1 -ac)
A’gk = acayak(1 -am)
A’bk = acamak(1 -ay)
A’cmyk = acamayak

Yule-Neilsen model
From the study of halftone process, Yule and Neilsen

pointed out that the light does not emerge from the paper at
the point where it entered. They estimated that between one-
fourth and one-half of the light which enters through a white
area will emerge through a colored area, and vice versa.
Based on this observation, Yule and Neilsen took    the light
penetration into consideration and derived the spectral
equation for the halftone pattern:4

R(λ) = rs + Rw(λ) (1 - rs) { 1 - A [1 - Ti (λ)]}n

where  rs = the surface reflection
A = the ink area coverage
Ti = the transmittance of the ink film
n = the Yule-Neilsen exponent

The ink area coverage and the effective transmittance
are provided by the Neugebauer equation such as the 4-
color version:

A = A’c + A’m + A’y + A’r + A’g + A’b + A’cmy + A’k
+ A’ck+ A’mk + A’yk + A’rk + A’gk + A’bk + A’cmyk

Ti(λ) = [A’cTc(λ) + A’mTm(λ) + A’yTy(λ) + A’rTm(λ)Ty(λ)
+ A’gTc(λ)T’y(λ) + A’bTc(λ)Tm(λ)
+ A’cmyTc(λ)Tm(λ)Ty(λ) + A’kTk(λ)
+ A’ckTc(λ)Tk(λ) + A’mkTm(λ)Tk(λ)
+ A’ykTy(λ)Tk(λ) + A’rkTm(λ)Ty(λ)Tk(λ)
+ A’gkTc(λ)Ty(λ)Tk(λ) + A’bkTc(λ)Tm(λ)Tk(λ)
+ A’cmykTc(λ)Tm(λ)Ty(λ)Tk(λ) ] / A

Clapper-Yule model
Clapper and Yule developed an accurate account of the

halftone process from a theoretical analysis of  the multiple
scattering, internal reflections, and ink transmissions. The
total reflected light is the sum of light fractions that emerge
after each internal reflection cycle.5,6 Including all these
parameters, they derived an analytical expression for the
halftone process.

R(λ) = ks+{fe(1-rs) fr[1-A+ATi(λ)]2}/
{1-fe)fr [1-A+ATi(λ)2]}

where
ks = the specular component of the surface reflection
fr = a fraction of light that is reflected at the bottom of

the substrate
fe = a fraction of light that is emerged at the top of the

substrate
Again, the ink area coverage and the transmittance are

provided by the Neugebauer equations.

Beer-Bouguer law
The Beer-Bouguer law relates the light intensity to the

quantity of the absorbant.7 The model is based on the

absorption phenomenon, therefore it is a subtractive theory.
It is widely used in the analytical work of liquid solutions.

log [(λ) / o(λ) ] = ξ (λ) = - (1 / 2.303) Kd(λ) x c

where
lo(λ) = a monochromatic light intensity before pass-

ing through an absorbent
l(λ) = a light intensity after passing through an ab-

sorbent
ξ(λ) = absorbance  (also  referred  to  as  the  optical

density) of the absorbent
Kd(λ) = absorption coefficient of the absorbent
λ = the wavelength
x = the length of light path traversing through the

absorbent
c = the concentration of absorbent

For mixed color films, the absorbance, ξm (λ), is
obtained by applying the proportionality and additivity
rules.

ξm (λ) = kd1 (λ)x1c1 + Kd2 (λ)x2c2 + ------ + Kdn(λ)xncn
i = 1, 2,--- ,n

where
Kdi = the absorption coefficient of ith primary ink
ci = the concentration of ith primary ink.

Kubelka-Munk theory
The Kubelka-Munk model assumes that the light is

being absorbed and scattered in only two directions, up and
down. A background is presented at the bottom of the
medium to provide the upward light reflection. The deriva-
tion of KM formula can be found in many publications.8-11

The basic form is shown below:

R(λ) = (1 - Rg(λ) { α(λ) - β(λ) coth [β(λ) S(λ) x] } )
/ ( α(λ) - Rg(λ) + β(λ) coth [β(λ) S(λ) x] )

where
R(λ) = the reflectance of the film.
Rg(λ) = the reflectance of the background.
α(λ) = 1 + K(λ)/S(λ)
β(λ) = [α(λ)2 - 1]1/2 = { [K(λ)/S(λ)]2

+ 2[K(λ)/S(λ) ] }1/2

coth [β(λ)S(λ)x] = {exp[β(λ)S(λ)x] + exp [β(λ)S(λ)x]}
/ {exp[β(λ)S(λ)x] - exp[-β(λ)S(λ)x]}

K(λ) = the absorption coefficient
S(λ)= the scattering coefficient

This expression is the foundation for various two-
constant Kubelka-Munk (KM2) formulas.

Single-constant KM theory
In the limiting case of an infinite thickness, the equa-

tion becomes

R∞ (λ)= α(λ) - β(λ) = 1 + [K(λ)/S(λ)] - { [K(λ)/S(λ)]2

+ 2[K(λ)/S(λ)] }1/2

The single constant, K(λ)/S(λ), of a multi-component
system is obtained by summing ratios of all components.
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K(λ)/S(λ) = [k(λ)/s(λ)]p + c1 [k(λ)/s(λ)]1 + c2[k(λ)/s(λ)]2
+ ----  + cn [k(λ)/s(λ)]n

where
(k/s)p = the single constant of the substrate
(k/s)i = the single constant of the component i
ci = the concentration of the component i

Each (k/s)i is, in turn, calculated from measured reflec-
tion spectrum of a primary ink.

[k(λ)/s(λ)]i = [1 - Ri(λ)]2/2Ri (λ)       i = 1, 2, 3,---- ,n

In this single-constant KM model (KM1), the correc-
tion for the refractive index that changes between air and a
colored layer is included. A simple correction is to subtract
the surface reflection from the measured reflectance, Rm(λ).

R∞ (λ) = Rm(λ) - rs

Another frequently used approach is Saunderson’s
correction,12

R∞ (λ) = Rm(λ) - fs] / [1 -  fs - fi + fi Rm(λ) ]
where

fs = a constant representing the surface reflection
fi = a fraction representing internal reflections.

Halftone correction factor
Because the subtractive theories are not developed for

the halftone printing, we propose an empirical correction to
halftone prints in an effort to relate the computed spectral
parameters and device characteristics. This spectral half-
tone correction factor, h(λ), is defined as:

h(λ) = Qm(λ) / Qc(λ)

where Q can be the optical density, KM1 constant, absorp-
tion coefficient K, or scatter coefficient S of the KM2
approach. The subscript c indicates the computed quantity
where the subscript m indicates the measured quantity from
halftone step wedges of a primary color. For a wide spectral
band, the definition can be modified as

H = ∫ Qm(λ) dλ / ∫ Qc(λ) dλ

This factor provides a direct connection between the
calculated and measured quantities. It is used to reduce any
differences between the computation and measurement.
For example, it can be used for the continuous-tone printing
when the deviation from BB linear behavior is high or
simply to improve the accuracy of the data fitting.

Experimental

Two printing devices are used for this study. They are a
Cannon Color Laser Copier 500 (CLC-500) utilizing xero-
graphic technology and a continuous ink jet printer using
premixed liquid inks.

CLC-500 copier
The CLC-500 is a product of Canon Inc. Japan. Elec-

tronic files with known printer cmy and cmyk values are

printed for testing the 3-color mixing and 4-color mixing,
respectively. In addition, multilevel intensity wedges,
ranging from the solid coverage to near white, of each
primary color are used to determine the area coverage,
effective transmittance, and halftone correction factors.
Halftone tints are made by using the line screen provided by
the manufacturer.13

Colorimetric data of prints are obtained by a Gretag
SPM 100 (45°/0° measuring geometry) spectrophotometer
using a 2° standard observer, illuminant D50, and absolute
white scale with black backing. The multi-level intensity
wedges are also measured with white backing for determin-
ing the K and S of the two-constant KM theory. This
instrument outputs the reflection spectrum in a 10 nm
interval from 380 to 730 nm. All data are the average of at
least three measurements at different locations of a patch.
The accuracy of the measurement is discussed in a previous
publication.14

Ink jet printer
The design of this continuous stream ink jet device

has been described elsewhere.15,16 It has a resolution of
300  spi. Full area coverage is obtained when all addres-
sable pixels within a given area are printed. Five 8-level
halftone wedges are printed by premixed inks on Xerox
4024 DP papers. These wedges are a 5% cyan plus 95%
magenta mixture, a 90% cyan plus 10% magenta mix-
ture, a 40% cyan plus 60% yellow mixture, a 15%
magenta plus 85% yellow mixture, and a 90% magenta
plus 10% yellow mixture. Samples are measured by a
Macbeth Color-Eye spectrophotometer with black
backings and sometimes white backing. This instrument
outputs reflection spectrum at 20 nm interval from 400 to
700 nm. Its software calculates tristimulus values,
CIELAB specifications, and color difference, ∆Eab, us-
ing the CIE 1931 standard observer with D65 illuminant.
Two measurements are made for each sample at two
different areas of a color patch. Most samples had ∆Eab
around 1 or less. The accuracy of the measurement is
discussed previously.17

Results and Discussion

Three criteria are used to evaluate the fitting of color models
with respect to the experimental results: ∆Εab

and ∆Erms,
the mean and root-mean-square color differences, and the
spectral error ∆Rrms expressed as the root-mean-square of
the difference between calculated and measured spectra.
Table l lists the test results under various conditions using
the same CLC-500 data. All results are the average of 64
color patches. We treat rs, fs, fi and n-expon-ent as adjustable
parameters for the best fit to the data.

The NE gives average color differences in low teens for
two different Yule-Neilsen n-exponents used for comput-
ing the area coverage. The lower n value gives a better
fitting by 0.91 ∆Εab  units.

The YN model fits the data in the neighborhood of 8
∆Εabunits (run 3 to run 9 of Table 1). This number is on the
order of the CLC-500 printer stability. Varying the surface
reflection does not give a significant change in the average
color difference. When the printer variability is incorpo-
rated into the YN model by varying device/cmy values
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within the tolerance, we are able to reduce the ∆Εabto 5.45.
This is the best improvement we have achieved. It implies
that the printer variability is the major source for the
modeling error.

Results of the CY modeling are given in run 10 to run
22, they range from 7.5 to 10.0 ∆Εab . Under the same
conditions except the Yule-Neilsen factor, the average
color difference is improved by more than 1 unit when the
higher n value is used (see runs 10 & 14 or runs 12 & 19).
Decreasing fs by 0.01 shows a less than 1 ∆Εab improve-
ment (runs 16, 18, and 19). The data fitting improves as fi
increases (runs 11 & 12 or runs 14, 15, 16, & 17).

Without correction, all subtractive color mixing theo-
ries fail badly for fitting the xerographic data (runs 23, 24,

25, & 26). The empirical halftone correction, however, is
every successful to both BB and KM1 models (runs 27, 28,
29, & 30). A close examination of the KM2 computation
reveals that the scattering coefficient, S, is strongly wave-
length-dependent. Therefore, the KM2 theory is not suit-
able for the correction that employs a constant scaling factor
across the whole visible spectrum. Results indicate that the
fitness is sensitive to the halftone correction curve as shown
in runs 28, 29, and 30 of Table l; the fitting improves from
∆Εab= 8 to 5 by adjusting the halftone correction curves.
Compared to the effectiveness of the halftone correction
factor, other parameters such as the surface and internal
reflections become secondary. The adjustment of these
parameters accounts for a fraction of an ∆Εab  unit.

Three most effective models for 3-color mixing are
selected for 4-color modeling, the results are given in
Table II. Each run is the average of 58 color samples.
Among these models, the halftone corrected KM1 seems
to fit the data best as evidenced by the smaller ∆Εaband
spectral error. By comparing these results with those
obtained for the 3-color mixing, all three models of the 4-
color mixing give a higher error by about 2 ∆Εabunits.
Further improvements in the data fitting for halftone

corrected BB and KM methods can be realized by prop-
erly adjusting the halftone correction curves.

Table 1. Summary of CLC-500 modeling results of three primary color mixing

Run

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Model

Neugebauer
Neugebauer
Yule-Neilsen
Yule-Neilsen
Yule-Neilsen
Yule-Neilsen
Yule-Neilsen
Yule-Neilsen
Yule-Neilsen
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Clapper-Yule
Beer-Bouguer
KM2
KM1
KM1S
Corrected BB
Corrected KM1-1
Corrected KM 1-2
Corrected KM 1-3

n

2.0
2.7
2.0
2.0
2.0
2.7
2.7
2.7
2.7
2.0
2.0
2.0
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
 -
 -
 -
 -
 -
 -
 -
 -

rs

 -
 -
0.0
0.01
0.02
0.0
0.01
0.02
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.03
0.02
0.01
 -
0.0
0.0
 -
 -
0.0
0.0
0.0

fs

 -

 -

 -

 -

 -

 -

 -

 -

 -
0.01
0.
0.
0.01
0.01
0.01
0.01
0.01
0.02
0.0
0.0
0.0
0.0
 -

 -

 -
0.0
 -

 -

 -

 -

fi

 -

 -

 -

 -

 -

 -

 -

 -

 -
0.40
0.40
0.50
0.35
0.40
0.45
0.50
0.55
0.50
0.50
0.50
0.50
0.50
 -

 -

 -
0.6
 -

 -

 -

 -

∆Ε rms

14.86
 -
9.09
9.30
9.80
9.30
9.31
9.55
10.98
11.15
10.27
9.41
10.30
9.70
9.30
9.03
8.85
9.93
8.44
8.43
8.43
8.42
13.28
40.45
32.72
34.75
8.60
9.73
7.12
6.05

∆Εab

12.33
13.24
7.93
8.01
8.25
7.85
7.78
7.81
8.69
10.02
9.40
8.61
9.11
8.58
8.19
7.91
7.72
8.52
7.54
7.53
7.52
7.51
12.27
36.47
30.61
32.62
7.14
8.01
5.83
5.01

* Corrected BB is the Beer-Bouguer model with halftone correction.
KM1S is the single-constant Kubelka-Munk model with Saunderson’s correc-

tion.
Corrected KM1 is the single-constant Kubelka-Munk with halftone correction.

Table III shows the results of ink jet halftone mod-
eling. Color patches are printed by using the clustered-
dot halftone pattern. The ∆Εab  is the average of 40 color
patches. All color mixing theories are less successful in
modeling the ink jet halftone prints than the xerographic
prints. The data suggest systematic errors in the printing
process. Nevertheless, better agreements are obtained by
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Table II.  Summary of CLC-500 modeling results of 4-color mixing

Table III.  Summary of Ink Jet modeling results of premixed inks

Model

Yule-Neilsen
Corrected BB
Corrected KM1

∆Rrms

0.0493
0.0531
0.0369

∆Erms

11.22
10.05
7.76

∆Εab

10.60
9.62
7.15

rs

0.0
 -
0.0

n

2.0
 -
 -

Run

1
2
3
4
5
6
7
8
9

Model

Neugebauer
Yule-Neilsen
Clapper-Yule
Beer-Bouguer
KM2
KM1
KM1S
Corrected BB
Corrected KM1

n

2.7
2.7
2.7
 -
 -
 -
 -
 -
 -

rs

 -
0.04
0.04
 -
0.0
0.03
 -
 -
0.0

fs

 -
 -
0.01
 -
 -
 -
0.03
 -
 -

fi

 -
 -
0.4
 -
 -
 -
0.6
 -
 -

∆Εab

17.26
12.61
12.88
12.29
13.49
18.20
18.34
9.65
7.64

∆Erms

 -
 -
 -
13.89
 -
 -
 -
11.77
8.05

using the halftone correction method (runs 8 and 9) that
brings the average color difference to the neighborhood
of the printer stability.

Conclusion

In this study, we examined three halftone color mixing
theories, two subtractive color mixing theories, and an
empirical extension of the subtractive models for the half-
tone printing. Results indicate that the spectral NE model
and two subtractive models are not suitable for modeling
either electronic devices. The halftone corrected subtrac-
tive models give good agreements to the experimental
results for both electronic printing devices with the YN    and
CY approaches following closely behind. They can fit the
data on the order of the CLC-500 printer variability
or better. Generally, they fit the CLC-500 data better than
the ink jet results and fit the 3-color printing better than 4-
color printing. Furthermore, this modeling reveals that the
primary factor affecting the accuracy of fitting is the printer
variability in terms of the toner density fluctuation and the
halftone correction curves. Secondary factors are the Yule-
Neilsen n-exponent, internal reflections, accuracy of the
area coverage, and surface reflections.

Granting that some theories are better than others;
these models, however, are phenomenon theories. They
depend on the characteristics of printing devices and the
specific measurements that the spectra of colorants are
determined under circumstances as close as possible to the
actual situation. Thus, it is not surprising that the most
promising approach is the empirical halftone correction
factor. This is because the factor is directly associated to
the device output such that it already takes into account
the characteristics of an individual printing device. There-
fore, it tends to shelter the difference in the devices regard-
less of the process. Such as it is, we believe that more
printing devices should be examined to test this halftone
correction approach.
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