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Abstract

Color devices such as scanners, printers and CRTs have
device specific coordinate systems.  It is desirable to be
able to produce mappings between the coordinate system
of a particular device and a device independent coordi-
nate system that closely approximates human percep-
tion.  In this way, color coordinates can easily be speci-
fied, transformed, or transported between various input
and output devices.   Mappings between color coordinate
spaces can be achieved by function restoration, when a
number of input-output samples of the mapping are
available.  Feed-forward multi-layer neural network
have been shown to be able to perform non-linear non-
parametric functional restoration, as is the case with
color coordinate mapping.  This type of network was
used to map the Lab coordinate space onto the RGB
coordinate space of an actual and a computer modeled
dye sublimation printer.  A neuron activation function,
is introduced herein, which has advantages that would
be useful to function restoration problems such as color
mapping.  The effectiveness of this model is tested by
observing the error between the model’s prediction and
the ideal correct output on a number of known samples.

I. Introduction

Accurate reproduction of color is often necessary in
many applications.  For example, companies who use
colored logos wish to have them reproduced consis-
tently, so that they become recognized for that color.
Incorrect reproduction in such a case is easily noticeable
and may cause the viewer to associate a lack of quality
with that company.  There are many other cases where
accurate color restoration is desirable.

If we are able to specify a color in a  uniform
coordinate system that closely represents human percep-
tion, such as the Lab coordinate system, it would useful
to have a transformation to convert these coordinates
into the CMY or RGB coordinates.  The CMY coordi-
nates produce should be the correct amount of dye to
recreate the color specified.   We want to determine a set
of functions, as presented in equations (1) to (3) that will
perform this task.  Linear equations are often used, but
they do not offer the accuracy required.   The task of
producing a function that will  meet these criteria can be
considered as a function restoration problem.

c = gc(L,a,b) (1)
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m = gm(L,a,b) (2)

y = gy(L,a,b) (3)

This task could be performed using a parametric
method, by attempting to discover the true functional
form of the transformation.  Because the physics of each
individual device is different, many different models
would  need to be created.  For each device, the specific
parameters of the model would need to be tuned. This
method is not viable due to the extreme complexity of
color devices.  Color devices such as the dye sublimation
color printer, which we will be considering, are ex-
tremely non-linear.  This type of  printer, for instance, is
prone to dye bleedback,  and nonlinearities in the print
head.  A non-parametric approach would be preferable.

A neural network approach could be used to deter-
mine these functions non-parametrically.  The input to
the network would be the device independent color
coordinates specified in the Lab system.  The output of
the network are the device dependent coordinates of the
printer.  The output would specify the amount of dye that
the network believes would most closely reproduce the
color specified by the Lab coordinates.

II. Problem Development

If you are given an unknown function  g(x), which you
are required to approximate, and you are able to obtain
input-output samples to this function for a variety of
different x values, how can you use this information to
determine the functions value between the known ex-
amples?  This is the task that we have in equation (4).

h = g(x); (hi, xi = 1,...,I (4)

Determining the value of g(x) between samples can
be approximated by interpolation.  If x is one dimen-
sional, linear interpolation can be used to approximate
the function in between the samples.  In the case of color
restoration, x is three dimensional.  Linear interpolation
in higher dimension is not a straightforward approach for
the following reason:  in a higher dimension the number
of nearest samples would over-determine a linear sur-
face.  For example, if x is three dimensional and the
samples are equally distributed in a cubic fashion, there
would be eight nearest samples.  Only four points would
be required to determine a linear surface.  A piecewise
linear interpolation could be used but this would utilize
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less information than is contained in all eight nearest
samples. As well, there would be several choices of
samples to use in the interpolation, each giving a differ-
ent result.  A non-linear interpolation can be created by
solving Laplace’s equation, where the boundary condi-
tions are set to correspond to the values of the eight
nearest samples.  This interpolation function requires
that the samples be equally distributed.  Laplace’s equa-
tions is shown for three dimensions in equation (5).

dxxV + dyyV + dzzV = 0 (5)

The boundary conditions in the color mapping prob-
lem would be of the form shown in equations (6) through
(13).

V(0,0,0) = h1 (6)
V(0,0,1) = h2 (7)
V(0,1,0) = h3 (8)
V(0,1,1) = h4 (9)
V(1,0,0) = h5 (10)
V(1,0,1) = h6 (11)
V(1,1,0) = h7 (12)
V(1,1,1) = h8 (13)

The h’s are the sample outputs as stated in equation
(4).  A general solution that can satisfy the boundary
conditions of equations (6) through (13) is given in
equation (14).

V(x,y,z) =
C1xyz + C2xy + C3yz + C4xz - C5x - C6y - C7z + C8 (14)

Solving for the particular solution of equation (14)
yields equation (15).

V(x,y,z;h1...h8) =
C1xyz + C2xy + C3yz +C4xz - C5x - C6y - C7z +C8 (15)

The constants of equation (15) based on the bound-
ary conditions are given in equations (16) though (23).

C8 = h1
C7 = h2 - h1
C6 = h3 - h1
C5 = h5 - h1

C4 =  h6 - h5 - h2 + h1
C3 = h4 - h3 - h2 + h1
C2 = h7 - h5 - h3 + h1

C1 = h8 - h7 - h6 + h5 - h4 + h3 + h2 - h1

I will refer to equation (15) as the Laplace interpola-
tion function. The use of the Laplace interpolation func-
tion is only valid within the boundaries determined by
the nearest samples.  In this derivation the bounds would
be for values of x that are within the unit cube. Laplace’s
equation has certain properties which motivate us to use
it as a interpolation function. The value of  V at a par-
ticular point is the average of the points that surround it.
The function V has no local maxima or minima. The
surface area of V  is minimized  while still being con-
strained to the boundary conditions.  This interpolation is

analogous to stretching a rubber sheet between a set of
points. 1

There is a further advantage to using the Laplace
interpolation function.  This advantage is that a basis
kernel function can be constructed from the Laplace
interpolation function for use in a neural network.  The
three dimensional Laplace interpolation function can be
decomposed into eight functions, one for each of the
samples.  This can be seen by observing equation (24).

h1V(x,y,z;1,0,...,0) + h2V(x,y,z;0,1,...,0) + ... +
   h8V(x,y,z;0,0,...,1) = V(x,y,z;h1...h8) (24)

The h’s of equation (24) which are the sample out-
puts can be regarded as weights to a neural network.
Proceeding further one can construct an activation func-
tion for the neurons of a neural network that utilizes this
decomposition.  The activation function is a form of
radial basis function.  Of ten times Gaussian radial
basis functions are used, but they tend to interpolate
with a great deal of oscillation.2  The output of the ith
neuron in the hidden layer of a multi-layer network
would given by equation (25).

if( xi+1 > x > xi-1 and yi+1 > y > yi-1 and zi+1 > z > zi-1)
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else
oi = 0 (25)

The value of xi in equation (25) is the center of the
basis function for the ith neuron.  It is also the location of
the ith sample.  Because the Laplace interpolation func-
tion has been derived for samples that are distributed
with a distance of one, the value of c is used to scale the
basis func-tion width for other distributions.  The scaling
constant c of equation (25) must be set so that the value
of oi goes to      zero when any of the resulting coordinates
of x - xi  is such that is greater than or equal to the distance
between basis centers.  The value of x is the value for
which we want to determine the functions response.  By
summing the activities of the all the neurons according to
the equation (26),

Onet = h io i
i=0

I

∑ (26)

the approximated value of equation (4) can be deter-
mined.  Only the neurons, whose basis centers corre-
spond to the nearest samples will contribute.  All others
will have zero value.  A further benefit of using a network
of basis functions of this type, is that only the neurons
of the nearest neighbors to the input value need be
calculated.  This fact means that the processing time for
calculating the approximation, only increases linearly as
a function of the number of neurons per dimension.
When the network is implemented on a non-parallel
computer, this method can save computational costs.

(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
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This method can be viewed as a look-up table with
polynomial interpolation between entries.

There are other difficulties in the color mapping
problem that must be dealt with.  This method would not
be able to predict dye concentration for colors outside the
printers gamut.  To deal with this situation, Lab coordi-
nates should be tested to determine if they are within the
gamut of the printer.  If not, these Lab coordinates should
be mapped onto the closest Lab coordinate that are
within the printer’s gamut.  The closest Lab values can be
used for calculation of dye concentrations.  The gamut
can be determined from samples that are on the boundary
of the printer coordinate space.  Because dye concentra-
tion are specified in the range 0 to 1,  the required
samples would be those corresponding to coordinates on
the surface of the unit cube.  The corresponding Lab
coordinates to these samples would determine a volume
in the Lab coordinate space.  The gamut of the printer
specified in Lab space would no longer by cubic, but
would be a highly contorted shape.  Decision boundaries
can be formed by interpolating between the samples that
are known to be on the boundary of the gamut.   The
decision boundaries could be learned by neural network
classifier.

III. Neural Network Implementation

The method previously described can be interpreted as a
neural network.  The architecture that represents this
method is shown in figure 1.  The intended inputs to the
network are the Lab coordinates, and the intended out-
puts are the CMY or RGB coordinates.  The inputs and
outputs are shown on the figure 1, which also indicates
the unidirectional flow of information through the net-
work.  The circles represent neurons, and the lines repre-
sent connections.  The neurons in each layer operate
differently.  The input neurons do not provide any pro-
cessing, but simply pass the value with high fan-out.  The
middle or hidden layer neurons incorporate a transfer
functions that implements the Laplace interpolation func-
tion as described previously in equation (25).  The output
neurons calculate a weighted sum of the inputs they
receive.  These weights are associated with the connec-
tions, and are determined from the available samples.  If
the samples are distributed to correspond to the centers of
the basis function for each neuron, the weights can be set
immediately to the values of the sample outputs.  If not,
a set of weights can be determined iteratively.  The
connections of the input to middle layer have weights
that are permanently set to one.  The network would
compute as in equation (27), with the h’s of equation (26)
being replaced with w’s to denote that the weights may
be determined iteratively from the samples.

Onet = wioi
i=0

I

∑ (27)

If only unequally distributed samples can be ob-
tained, a network of this type can be trained with an
iterative gradient descent method, to obtain the weights.
The method, which was used is shown in equation (28).

wi(k+1) = wi(k) + β (k)[hk - Ok(x)]K(x, xi) for all i (28)

It utilizes a factor β (k) that is decreasing function
that regulates the learning rate and causes that final set of
weights to “settle down” toward the end of the training
process. The term [hk- Ok(x)], adjusts the weights ac-
cording to the amount of error observed. The term hk
denotes the sample output, and Ok(x) denotes the cur-
rent network prediction.  The kernel function K(x, xk)
alters the weights in inverse proportion to the distance
from the sample position x to xi, the center position
associated with each weight or neuron.  This kernel term
we used causes only the weights for the nearest eight
neurons to be altered.
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Figure 1. Feedforward Neural Network

Its value is one for weight-example distances of
zero, and decreases to zero for increasing distance.  The
same functional form as equation (25) above, was used
for the kernel function.  Many different kernel functions
could be used instead of this one.  Indeed other neighbor-
hood functions may be preferable.

VI.  Results

This network was trained to approximate the mapping
from the three Lab coordinates to the three RGB coordi-
nates.  The network contained six neurons per dimen-
sion.  192 samples were used. The examples were gath-
ered by printing the samples equally distributed in the
printer coordinate space.  Their spectral response was
measured with a spectrophotometer and the Lab values
were then calculated . As stated before it would have
been preferable to have examples equally distributed in
the input space of the Lab coordinate system; however,
this would require an a priori knowledge of the mapping.
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The network was tested by producing 96 randomly gen-
erated colors in the printer coordinate space.  The Lab
coordinates for this test set were also determined.  The
network was given these Lab values for prediction of
RGB values. The rms error for the network was found to
be .035, .045, and .055 for each of the RGB coordinates
respectively after 24000 iterations of learning.  It should
be noted that because the test sample set was taken from
the printer coordinate space, the resulting Lab coordi-
nates were guaranteed to be with in the gamut of the color
printer during testing.

The network was also trained with computer gener-
ated examples, rather than real measured examples.  The
color printing process was simulated by the approximate
equations shown as equation (29).3

C(λ) = W(λ)P(λ)Cyano(λ)cMagentao(λ)mYellowo(λ)y (29)

W(λ) stands for the spectra of the white light.   P(λ)
stands for the filter function of the paper. Likewise,
Cyano(λ)c stands for the filter function of the Cyan dye as
a function of wavelength and concentration.  The con-
centration is specified by the lower case letter in the
exponent.  The exponents range form zero for no dye to
one for maximum concentration.  Cyano(λ) represents
the transmission at maximum concentration for the cyan
dye.  The functions are represented the same way for the
Magenta and Yellow dyes.  Much lower error rates were
achieved when the number of neurons per dimension was
increased.  In this mapping, network sizes up to 40
neurons per dimension were used.  The samples were
continuously randomly generated.  It is impractical to
use larger networks for actual mappings of real samples
due to the fact that increased quantities of samples would
be necessary and data collection of samples is a time
consuming process.  The error  achieved corresponded to
an average of about .004 for all dyes.  This error is close
to being indistinguishable to humans.

V. Conclusions and Future Work

It is our intention to further this research by also produc-
ing mappings between the color scanner and the Lab
coordinate system. This should provide a complete sys-
tem which can be tested by observing the difference
between scanned pictures and the corresponding printed
pictures predicted by the chain of networks.  Adding the
scanner to the system, will allow a determination of how
well colors that are out of the printer gamut can be
reproduced.  A method of determining the decision bound-
aries for the printer gamut will have to be chosen and
implemented.  It is also our intention to use other meth-
ods, (iterative and otherwise) to learn the network weights,
to determine which will provide the most accurate set of
weights.

Comparisons should be made between this method
and others available methods of color restoration.  These
comparisons should include computation costs and the
level of accuracy achieved by each method.  Compari-
sons should be made with linear methods, other neural
network methods, and conventional statistical methods.
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