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Abstract
The main aim of this study is to investigate which would

be the best algorithm for spectral estimation from Transverse
Field Detectors (TFD) sensor responses. We perform a qual-
ity check of the estimation accuracy of five different algorithms,
most of which are recent proposals. Some modifications are in-
troduced as well in their implementation to simplify calculations
or to increase the performance (see subsection Spectral estima-
tion algorithms for details). The results obtained have allowed us
to introduce relevant suggestions for enhancing the TFD sensor
performance for their use in multispectral capture devices. This
work paves the way for the practical development of a fully auto-
matic multispectral device based on sensors with reconfigurable
responsivities.

Introduction
Multispectral imaging deals with retrieving spectral infor-

mation for each pixel of an image, and it has been a rather active
research field in the last 10-15 years [1]. The range of possi-
ble applications is quite wide and covers, among others, medical
imaging [2], food industry [3], remote sensing [4], and military
purposes [5]. New applications are also emerging at a fast pace.
A typical multispectral device captures the image with a reduced
number of sensors, and then uses an algorithm to estimate the
spectral information from the camera responses [6]. Ultra and
hyperspectral systems [7] don’t estimate the spectra. They mea-
sure them, but they are usually more expensive and complex than
multispectral devices. Many efforts have been dedicated to try to
achieve full spatial and spectral resolution with one single sen-
sor offering a fast response and high accuracy [8]. The Trans-
verse Field Detectors [9],[10] are one of the most recently devel-
oped devices with potential applications in multispectral imag-
ing. These devices are based on filterless colour sensitive pix-
els. The working principle takes advantage of the wavelength-
dependent properties of light absorption in Silicon. The differ-
ent wavelengths penetrate the Silicon substrate reaching differ-
ent depths. Then, the photocarrier collection can be organized
so that each single pixel can provide responses to several chan-
nels at the same time (usually, 3 channels are collected for each
single pixel, but there can be potentially even up to 5 channels
responding to the incoming light). One additional fundamental
advantage of this technology is that it can exploit the tuneabil-
ity of the electric fields applied. Thereby it offers reconfigurable
spectral responsivities simply by applying different biasing volt-
ages to the pixel, without the need of moving mechanical com-
ponents. This emerging technology is then very interesting as
a candidate for achieving full resolution multispectral capture.
The reconfigurable responsivities of the TFD sensors have quite
unique features. The design of a multispectral capture system
including these special kind of sensors must include a wide set
of previous computational simulations to study the influence of
several factors on the spectral accuracy of the device, like the

spectral estimation algorithm used to obtain the colour signals
or reflectances from the sensors responses. Several studies of-
fer data on comparative performance of spectral estimation al-
gorithms for different multispectral systems [11],[12],[13], but
none of them have used reconfigurable or TFD responsivities so
far.

Methods
This study is based on simulation of the sensor responses of

a multispectral device equipped with a TFD sensor. We first will
find the optimal channels for our system in subsection “TFD sen-
sor responsivities”, then describe the computational calculation
of sensor responses (including additive noise) and the spectral
database built for assessing spectral estimation accuracy in sub-
section “Simulated camera responses and spectral data”. Some
insight into the algorithms underlying ideas and their implemen-
tations is given in subsection “Spectral estimation algorithms”.
The quality indices used are described in subsection “Spectral
recovery quality indices”.

TFD sensor responsivities
We explained previously that each single pixel of the sensor

offers three channel responses (R, G and B), which are reconfig-
urable by changing the biasing voltage. This biasing voltage can
be changed before each capture. One of the first issues that we
have to consider is how many channels are going to be included
in our multispectral system. The number of channels determines
the number of shots for each capture. For instance, if we are
designing a single-shot multispectral then we would have three
channels (the three corresponding to R, G and B for each pixel).
Then, if we need to add additional channels, we have to tune the
spectral responsivities of the TFD and so change the applied bias
voltage and take two shots for each capture, allowing for up to
six channel responses. We have to consider a trade-off between
the potential advantage of using additional channels and the dis-
advantage of adding more shots to each capture. As a starting
point, the spectral responsivities of eight different biasing condi-
tions (each corresponding potentially to one shot and three differ-
ent channels) were simulated using a range of maximum applied
voltages ≤ 9V to cope with typical sensors voltages. The
simulated spectral responsivity curves are shown together with
several experimental ones, obtained on a new prototype struc-
ture, in figure 1. We can see that there is a relatively good agree-
ment between the simulated and the experimental responsivities
shown. Among these responsivities, we selected the group of
three RGB channels (one shot approach) offering the best esti-
mation quality. We used for this purpose the least computation-
ally demanding estimation algorithms, which were the pseudoin-
verse and matrix R (see details in subsection Spectral estima-
tion algorithms) and the spectral database described in subsec-
tion Simulated camera responses and spectral data. We added
then an additional channel by testing all the rest of the remaining
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21 channels one by one and evaluating the spectral estimation
accuracy, and finally selected the additional channel that offered
the best performance. So far we have then a two-shots (as we
have to change voltage once to introduce the additional channel)
but four-channels multispectral capture device. At least for the
present implementation, using all the three channels in the sec-
ond shot (up to six globally) resulted in a decrease in estimation
quality, so only the green channel of the second shot (offering
the best performance) was selected. The corresponding normal-
ized spectral responsivities chosen as sensors of the multispectral
device are shown in figure 2.

Figure 1. (Top) simulated RGB spectral responsivities corresponding to

different applied biasing voltages; (Bottom) experimental spectral respon-

sivities obtained on a prototype TFD pixel built in a CMOS standard 150nm

technology. Note that for each biasing condition, the overall quantum effi-

ciency for each pixel is the sum of the corresponding RGB efficiencies

Simulated camera responses and spectral data
We have calculated the camera responses using the spectral

responsivities and the color signals corresponding to the product
of the reflectance set by the SPD of the illumination, as explained
in eq. 1:

ρ = RT E +σ (1)

Where ρ represents the sensor responses to the color sig-
nal E, and R is the matrix of spectral responsivities of the sen-
sors, which is transposed as indicated by the T superindex. σ
represents the additive noise. When noiseless camera responses

are simulated, σ = 0. Therefore, for noiseless simulations, each
color signal will have 4 sensor responses. For noisy camera re-
sponses, a normal distribution of σ -values is calculated for each
noise-free response. This distribution is centered in the noise-
free camera response, and its standard deviation is calculated as
shown in eq. 2:

σi = 0.01 · riw

√

ri

riw
(2)

Where riw is the camera response for a perfect white under
the same illumination and ri is the noise-free camera response.
We have simulated intensity dependent noise (shot noise and
flicker noise). The value 0.01 was selected because it simulates
optimally an existing imaging system. Quantization noise is also
introduced (using 12 bits per channel, which is a typical value for
a commercial digital camera). Dark current noise can be avoided
subtracting the dark image to each sample image, and thermal
noise can be reduced down to negligible values cooling the cam-
era, so these two noises are not simulated. In this study, we have
used as spectral data a reflectance set designed to allow for gen-
eralization of results. It is composed of 160 reflectances which
were chosen among different publicly available databases corre-
sponding to: 60 from urban scenes and rural scenes [14], 20 from
Munsell book of colors, 30 from Vhrel’s database [15] and 50
from the Color Checker DC (Gretag Macbeth GmbH, Germany).
We have used the standard illuminant D65 for computation of the
color signals. The samples have a quite regular distribution in the
L∗a∗b∗ color space.

Spectral estimation algorithms
Five different algorithms have been selected which are

representative of different strategies for estimating spectral re-
flectance from few sensor responses. We have used the following
criteria for the selection of algorithms: amount of data needed as
input (some of them need the spectral responsivities of the sen-
sors, some only require a training set, others both) and absence of
use of dimensionality reduction techniques, which would require
additional reflectance sets to work optimally. The final selection
of algorithms includes the pseudoinverse [16], [17], kernel [11],
Projection onto convex sets (POCS) [18], MatrixR, and radial
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Figure 2. Optimal normalized 4 sensitivities selected against wavelength

(nm). Normalization is done to set as 1 the maximum value out of all 8 TFD

set ups.
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basis functions neural networks (RBFNN) [19]. Some details of
the implementation for each algorithm are explained below. We
have used the leave one out cross validation method [20] for the
selection of samples forming the training and test sets. It is an
iterative method, which takes out one reflectance from the set
of 160, as test set, while the remaining 159 reflectances are the
training set. So the reflectance that is estimated is never included
in the training set.

Pseudoinverse
This algorithm uses as input the color signals of the training

set and the sensor responses of the training and test sets. The first
step is to build a transformation matrix D as eq. 3 shows:

D = CT ×ρ+
T (3)

Where CT is the set of color signals corresponding to the
training set and ρ+

T is the pseudoinverse matrix of the sensor re-
sponses for the training set. Finally, the estimated color signal C
is obtained as eq. 4 shows:

C = D×ρ (4)

Where ρ is the vector with sensor responses for the test set.
The estimated reflectance is obtained by discounting the illumi-
nation from the color signal C.

MatrixR
This algorithm is based in the combination of the Wyzsecki

hypothesis and the matrix R theory. It involves the calculation of
two transformation matrices, one spectral transformation Ms and
one colorimetric transformation Mc. The recovered color signal
is calculated as eq. 5 shows:

C = [A× (A′ ×A)′ ×Tp]+ [(I −R)×N] (5)

Where the first term of the sum corresponds to the funda-
mental stimulus N∗ and the second to the metameric black B. A
is the matrix of color matching functions (CMF) of the CIE 1931
2 deg. standard observer. Tp is the matrix with the predicted
tristimulus values, calculated as eq. 6 shows:

Tp = [T ×ρ+
L ]× [(α ×ρT +β )γ ] (6)

Here the first term corresponds to the colorimetric trans-
formation Mc and the second one to the corrected sensors’ re-
sponses for the training set (ρL) after applying a gain-offset-
gamma (GOG) model. This way of computing Mc is different
from the original proposal of the algorithm and it offers the ad-
vantage of being simpler and making the algorithm to gain in
generality. The matrix R is calculated as eq. 7 shows:

R = A× (A′ ×A)−1 ×A′ (7)

And finally N is the starting value spectrum for each esti-
mate sample and it is calculated as eq. 8 shows:

N = MS ×ρ (8)

Where the Ms matrix is equal to D in the pseudoinverse al-
gorithm and ρ is the matrix of sensors’ responses for the test
set. In this algorithm the parameterization of α , β and γ plays
an important role in order to get optimal performance. Thus,
an optimization procedure is implemented to check all possible
combinations of values within a given range and obtain the best
combination of parameters minimizing a combined spectral and
colorimetric distance measure explained after. This optimization
procedure was not implemented in the version of matrix R used
in a preliminary study not including TFD sensors [20].

Kernel
This algorithm estimates directly reflectances instead of

color signals. The first step is to calculate the Gaussian kernel
matrices K and κ according to eq. 9:

Kjm = exp(− (CT j −CT m)′ ×W ′ ×W × (CT j −CT m)
2σ2 ) (9)

Where CT j is a column vector formed by the color signal
corresponding to sample j of the training set, and W is a matrix
containing the spectral responsivities of the sensors. The param-
eter σ is the effective area of the kernel, and its optimal value
was 4.9×10−11 for our particular data set. It was obtained after
some brute-force optimization process as the one giving the best
estimation quality. The second kernel function κ is calculated for
each estimated sample i as eq. 10 shows:

κ j = exp(− (ρ j −ρi)′ × (ρ j −ρi)
2σ2 ) (10)

This kernel matrix creates a feature space with the same
dimension as the number of samples. Then, the estimated re-
flectance for sample i is calculated as eq. 11 shows:

Rk = RT × (K + γI)−1 ×κ ′ (11)

The parameter γ is introduced in the recovery equation to
prevent instabilities in the matrix inversion. Its optimal value
was found to be 4.7×10−5.

POCS
This algorithm works iteratively by computing normalized

projections of the initial estimates onto the responsivities of the
sensor set (multiplied by the illumination SPD), and correcting
the initial estimate each step by decreasing the difference be-
tween this projection and the sensor response, maintaining a pos-
itivity and a smoothness constraints. The smoothness constraint
has been introduced by us to improve the quality of the estima-
tions. To obtain the estimated spectral reflectance we compute
the factor G j as shown in eq. 12:

G j =
F ′

i ×WSPDj −ρ ′
i j

Nj
·W ′

SPDj
(12)

Where ρi j is the sensor response corresponding to the sam-
ple being estimated (i) for sensor j, Fi is the starting value or
initial estimate, WSPDj is a matrix containing the product of the
spectral responsivities by the illumination SPD, and Nj is a vec-
tor containing the square Euclidean norm of matrix WSPDj . Then,
we correct the initial estimate Fi by subtracting G j and introduce
the positivity and smoothness constraints. The number of itera-
tions is the only parameter we can vary in this implementation of
the algorithm. We have found an optimal value of 412.

RBFNN
This algorithm creates a neural network with one hidden

layer and trains it with the training set of color signals in order to
recover also a color signal. The training is done by minimizing
the mean squared error (MSE) adding neurons to the network.
The activation function of each neuron is a Gaussian function.
The parameters to be set here are maximum number of neurons
to be added, goal MSE and spread of the network, with optimal
values found of 40, 0 and 40 respectively. The RBFNN algo-
rithm has the drawbacks of being very sensitive to an adequate
selection of the training set and also of being somewhat compu-
tationally demanding, as it involves an iterative training step.
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Spectral recovery quality indices
We used three metrics to analyze the quality of the spectral

estimates obtained by the different algorithms. Two of them are
based on spectral similarity between the original and estimated
samples (the root mean square error or RMSE, and the goodness-
of-fit coefficient or GFC [21]), and one of them is based on visual
perception (the CIELab Color difference equation or ΔE∗

ab using
D65 as reference white and the CIE 1931 standard colorimetric
observer). The RMSE index focuses on absolute differences be-
tween the original and estimated sample reflectance, and so is not
independent of scale factors. In the best case it equals 0.

RMSE =

√

√

√

√

1
n

n

∑
j=1

(E(λ j)−ER(λ j))2 (13)

The GFC quality index is the cosine of the angle formed by
the two samples in the high-dimensional vector space of spectral
signals. The closer the GFC is to unity, the better the estimation
quality of the sample. The GFC index is independent of scale
factors; so two samples differing only in scale but not in shape
would result in a GFC of 1.

GFC =
∑n

j=1 E(λ j) ·ER(λ j)

[∑n
j=1[E(λ j)]2]

1
2 · [∑n

j=1[ER(λ j)]2]
1
2

(14)

The ΔE∗
ab is just the Euclidean distance between both sam-

ples within the CIELab color space. There are newer color
difference formulae recommended by the CIE, like CIE94 or
CIEDE2000. We have chosen this color difference equation be-
cause the aim in this work is to compare between different al-
gorithms so the choice is not really critical in this case, and this
measurement is widely used in the literature. An additional met-
ric has been used for the optimization process. It’s the combined
spectral and colorimetric metric (CSCM) [21].

CSCM = ln(1+α · (1−GFC))+(β ·ΔE∗
ab) (15)

For a perfect match, this parameter equals 0, and we can
control the weight of the spectral and colorimetric metrics vary-
ing the parameters α and β . We have set these values to α =
1000 and β = 10.

Results
Noiseless camera responses

In table 1 we show the average and standard deviation of the
quality indices for the 160 samples for the different algorithms.

Table 1: Noiseless results. Standard deviation in parenthesis.
Algorithm GFC RMSE ΔE∗

ab
Pseudoinverse 0.9979

(0.0026)
0.0286
(0.0131)

3.05
(2.40)

MatrixR 0.9981
(0.0022)

0.0289
(0.0137)

2.03
(1.36)

RBFNN 0.9981
(0.0051)

0.0251
(0.0131)

2.76
(2.59)

POCS 0.9984
(0.0020)

0.0250
(0.0132)

2.09
(1.89)

Kernel 0.9984
(0.0026)

0.0237
(0.0134)

1.69
(1.76)

The best results are those of Kernel while the worst are those
of Pseudoinverse for GFC and ΔE∗

ab and Matrix R for RMSE.
The quality of the estimations can be considered acceptable for
spectral indices and also for color differences in the best cases.

Noisy camera responses
In table 2, we show the results corresponding to the average

and standard deviation of the 1600 recoveries done for each algo-
rithm (10 for each reflectance with different values of σ equally
spaced in the noise distribution). As expected, the recovery qual-
ity decreases when compared to noise-free data.

Table 2: Noisy results. Standard deviation in parenthesis.
Algorithm GFC RMSE ΔE∗

ab
Pseudoinverse 0.9941

(0.0064)
0.0497
(0.0216)

9.37
(7.26)

MatrixR 0.9962
(0.0041)

0.0487
(0.0233)

4.57
(4.0769)

RBFNN 0.9941
(0.0337)

0.0473
(0.0238)

8.2807
(9.5163)

POCS 0.9959
(0.0049)

0.0416
(0.0192)

5.7098
(4.1218)

Kernel 0.9965
(0.0083)

0.0385
(0.0217)

4.3313
(3.2500)

Once more, the best results are those of Kernel, and the
worst those of pseudoinverse. The algorithm that has registered
the highest loss in the quality of the recovered signals is pseu-
doinverse. This shows that it is the least robust against noise. We
have to consider also that there’s no possible room for improve-
ment in these results because the algorithm is not parametric.
Also the matrix R and the RBFNN have shown less robustness
against noise than POCS and kernel. We must take into account
for the analysis of these results the fact that the weight given to
the 10 noisy responses in the calculation of the recovery qual-
ity indices is the same for all levels of noise; instead, for a real
system, the likeliness of getting noisy camera responses in the
extremes of the distribution would be rather low. So in our com-
putations we have designed almost a “worst case” scenario. We
expect that using real sensor responses would offer better estima-
tion quality than our noisy data simulations. However, we are un-
able to put this assertion to the test because the sensors are still in
an early stage of development. In the near future, we plan to use
the real responsivities data shown in figure 1 (bottom) with sim-
ulated noise to compare the spectral estimation performance data
with those obtained using the simulated responsivities, which are
presented in this study. In figure 3 we can see the comparison of
noiseless and noisy results for the ΔE∗

ab.

Figure 3. Comparison of ΔE∗
ab for noiseless and noisy sensors. The darker

bars correspond to noiseless sensors’ responses

We can see that the worst behavior when noise is intro-
duced corresponds to Pseudoinverse, as commented earlier, and
to RBFNN. This can be explained because the RBFNN algorithm
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tries to map directly camera responses onto spectral data, and this
gets increasingly difficult if the noise increases. The matrix R al-
gorithm behaves better regarding the colorimetric index because
it is designed specifically to obtain good colorimetric quality for
its estimations. In figure 4 we show two examples of the best
recoveries for the noisy case and two examples of the worst.
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GFC=0.9969; RMSE=0.0521; ΔEab*=2.6053
Best recovery for Kernel

GFC=0.9528; RMSE=0.1155; ΔEab*=63.1095
Worst recovery for Pseudoinverse

GFC=0.9978; RMSE=0.0548; ΔEab*=4.5099
Best recovery for POCS

GFC=0.9678; RMSE=0.0942; ΔEab*=10.2426
Worst recovery for Kernel

Figure 4. Examples of best and worst reflectance recoveries against wave-

length (nm).

The best recoveries were found for the sensors’ responses
close to the noise-free case, and the worst recoveries to those
values in the extremes of the noise distribution. As expected, the
higher the noise the worst the recovery accuracy.

Comparison with narrower sensitivities
It was found that the results with TFD sensitivities for the

noisy case are not very good especially regarding the color dif-
ference index. A further study was done with the same set of
reflectances for the set of six narrow sensitivities used in [23].
Since kernel provided the best performance, in table 3 the results
presented correspond to this algorithm for both the noiseless and
noisy cases.

Table 3: Noisy results. Std. in parenthesis.
Metric Noiseless Noisy
GFC 0.9987 (0.0023) 0.9985 (0.0025)

RMSE 0.0214 (0.0155) 0.0266 (0.0161)
ΔE∗

ab 0.2033 (0.2583) 0.7324 (0.3768)

It can be seen that for these sensitivities the recoveries are
well below the tolerance limit for color difference and spectral
indices, even in the noisy case. This points out the fact that nar-
rower responsivities are better able to separate the samples in the
sensor response space and so the algorithms can perform better.
Improvements in the spectral recovery performance are thus ex-
pected also for the TFD by combining the sensor responsivities
with external filters like UV-IR filters (always part of a digital
camera, and which would be helpful to sharpen the responsivities
at both ends of the visible spectrum). By now the real TFD pix-
els are not mounted in a capture system with optics and camera
body, but we expect that they will be in the next years. Also the
use of sharpening filters within the visible range, like the color-
optimum pre-filter proposed by Lyon and Hubel in [24], can very
likely help in improving the TFD performance both in standard
RGB mode and in the spectral recovery mode (multispectral cap-
ture system) proposed in this work. Also taking advantage of
the results of this work, new TFD geometries can be designed
to guarantee ab initio a lower overlap in the native spectral re-
sponses.

Conclusions

Our computations have shown that using the TFD with only
two shots, a multispectral image can be captured with full spa-
tial and spectral resolution. A set of five algorithms has been
tested to recover spectral reflectances from these new generation
reconfigurable sensor responses. Among the tested algorithms,
the easiest to implement and to use is the Pseudoinverse method.
However, it is not the best choice since its performance is very
poor for noisy camera responses. Kernel yields the best results
for all the metrics with the TFD responsivities, and also with an
additional set of responsivities that are narrower spectrally. This
shows that the TFD sensors performance in multispectral acqui-
sition systems can be greatly increased if additional filters are
introduced to make the responsivities narrower, without compro-
mising the main advantages of the TFDs which are the tuneabil-
ity and the full spatial resolution. This study offers a useful set
of preliminary results confirming the applicability of this new
detector technology in multispectral capture devices in the near
future when the necessary improvements will be developed. In
future work, we will substitute the pseudoinverse approach by
the widely used Wiener algorithm, which is expected to perform
better for noisy camera sensor responses.
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