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Abstract 

Large multi-spectral datasets such as those created by 
multi-spectral images require a lot of data storage.  
Compression of these data is therefore an important problem. A 
common approach is to use principal components analysis 
(PCA) as a way of reducing the data requirements as part of a 
lossy compression strategy. In this paper, we employ the fast 
MCD (Minimum Covariance Determinant) algorithm, as a 
highly robust estimator of multivariate mean and covariance, to 
detect outlier spectra in a multi-spectral image. We then show 
that by removing the outliers from the main dataset, the 
performance of PCA in spectral compression significantly 
increases. However, since outlier spectra are a part of the 
image, they cannot simply be ignored. Our strategy is to cluster 
the outliers into a small number of groups and then compress 
each group separately using its own cluster-specific PCA-
derived bases. Overall, we show that significantly better 
compression can be achieved with this approach. 

Introduction 
Conventional 3-channel image color imaging devices 

capture limited spectral information about each scene location. 
RGB images are device-dependent in that they depend on the 
spectral sensitivity functions, which may differ from one device 
to another. In addition, the RGB color information depends on 
the scene illuminant. A change in illuminant leads to the 
problems of metamerism. The limitations of 3-channel color 
imagery, especially when high-fidelity color reproduction is 
required as, for example, in the reproduction and conservation 
of fine arts painting, are frequently overcome by moving to 
multi-spectral image capture [1-4]. 

The spectral reflectance defines an excellent “fingerprint” 
of a surface and provides the most useful information for color 
specification under any illuminant and for any observer. In the 
last decade, multi-spectral imaging has gained a growing 
interest in several applications such as color reproduction [4-5], 
medical imaging [6], art conservation science and digital image 
archives with high color accuracy [1-4]. Unlike typical digital 
photography, the multi-spectral imaging systems based on 
acquiring the spectral reflectance at each pixel of an image 
provide a device-independent representation that can be 
rendered as a correct color under any viewing condition. 

Although the extra information provided by a multi-
spectral imaging device can be very useful, the large amount of 
data can be a problem in terms of storage and communication 
requirements. Digital image compression is an important task in 
image processing and provides efficient solutions for storage of 
a large volume of image data [7-9]. 

It is well documented that the spectral reflectance of a 
non-fluorescent objects is generally a smooth function of 
wavelength, and therefore can be modeled via dimensionality 
reduction techniques. In the other words, the smooth spectral 
reflectances are usually highly correlated and can be 

represented as a linear combination of a few basis vectors. 
Principal component analysis (PCA) is a well-known technique 
[10] in multivariate data analysis that has been extensively used 
in the context of spectral imaging as an efficient technique for 
spectral decorrelation as well as spectral dimensionality 
reduction [11]. PCA determines a linear transformation from 
the high-dimensional spectral space to the low-dimensional 
spectral subspace, which among all linear transformations 
guarantees the best possible representation of the high-
dimensional spectral vector in the low-dimensional subspace, 
spanned by the a few numbers of basis vectors.  This feature 
has made PCA a powerful tool for spectral compression. 

It should be noted that the projected data can reconstructed 
to the original space; however, the compression process will 
usually lead to some error in the reconstructed data. According 
to Laamanen et al. [12], the number of basis vectors required 
for effective recovery of reflectance totally depends on the type 
of data involved and the basis vectors that are used. Obviously, 
the more correlated the input data, the better the result (in terms 
of reconstruction error) that is achievable by using PCA. 
Applying weighting factors on individual samples [13] and 
clustering of the main dataset based on a predefined criterion 
[14-15] are techniques that have been used to enhance the 
efficiency of linear models by increasing the similarity of the 
elements in the dataset. 

It is worth noting that in each dataset there are some 
elements that may be a long way from the remainder of the data 
or do not conform to its correlation structure. Such elements are 
known as outliers and they can have a substantial effect on the 
results of the dataset analysis. Therefore, it is desirable to 
remove or reduce the effect of such observations before 
applying PCA on a dataset [10]. 

Analysis of the spectral reconstruction of 1269 Matte 
Munsell color chips [16] indicates that some color samples, 
mostly in the family of purples, have a detrimental effect on the 
spectral and colorimetric reconstruction error of the whole 
dataset. Almost half of these samples are statistically outliers 
with respect to the other samples. Further investigation also 
shows that nearly 70% of the Munsell spectral whose 
reconstruction error (in terms of RMS) is more than the median 
error of the whole dataset also have a large robust Mahalanobis 
distance from the mean. If we omit purples from Munsell 
dataset and then extract eigenvectors and use these eigenvectors 
for reconstruction of all 1269 samples, the error is less than 
reconstruction with bases extracted from all samples (including 
purples). This observation motivated us to study the effect of 
outlier spectra in a large datasets of reflectance spectra, 
including those derived from multi-spectral images, and then 
propose a new method of compressing spectra based on the 
following steps: (1) separate the outliers from the non-outliers; 
(2) use standard PCA data reduction on the non-outliers; (3) 
apply k-means clustering to the outliers; (4) apply PCA data 
reduction to the clusters individually. 
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Outlier Detection in a Spectral Dataset 
The Mahalanobis distance is a measure based on the 

correlation between variables and has been widely used to 
detect multivariate outliers. For a multivariate vector 

T
p21j ]x,,x,x[ K=x from a dataset with mean ],,,[ p21 μμμ= Kμ  

and covariance matrix S the Mahalanobis distance is defined as 
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Multivariate outliers can be defined as observations having 
a large Mahalanobis distance. A quantile of the chi-squared 
distribution ( 2

975.0,PX ) is usually considered as the cutoff value. 
However, this approach does not provide a reliable measure for 
multiple outliers because of the masking effect collectively 
created by them, which means that they do not necessarily have 
a large MD. Therefore, it helps to estimate the mean and 
covariance of the dataset using a robust procedure [17-18]. 
There exist several robust estimators for mean and covariance. 
The minimum covariance determinant (MCD) [18-19] is widely 
known in the literature as a computationally fast algorithm and 
is the one we employ here. 

The MCD objective is to find h observations (out of N) 
whose classical covariance matrix has the lowest determinant. 
The MCD estimate of the mean is then the average of these h 
points. The MCD estimate of scatter is their covariance matrix. 
A complete description of the algorithm is presented in [18-19]. 
A Matlab library for robust analysis is readily available [20].  

In this study we used one multispectral image entitled 
“Fruits and Flowers” from the Joensuu spectral image database 
[16] and four multi-spectral images available from the database 
of Hordley et al. [21]. “Fruits and Flowers” is a 160120×  pixel 
image containing 19,200 spectral reflectances sampled at 10 nm 
intervals over the range 400 nm to 700 nm. Another four 
multispectral images have also been measured in the same 
wavelength band with the same sampling rate. The number of 
spectra in each image is reported in Table II. It should be noted 
that the border of these images was removed before analysis, so 
the reported number of spectra in Table II is slightly different 
from the actual size of the images in [21]. In this paper, we 
show the steps of our method on “Fruits and Flowers” and 
report only the final results for the other images in Table II. 

The result of using the “Fast MCD” algorithm [18] in 
conjunction with the MD distance (denoted MD

MCD
) on the 

19,200 Fruits and Flowers spectra is shown in Fig. 1. As can be 
seen, there is a substantial difference in the distances as 
measured by MD

MCD
 as compared to MD

classic
 (i.e., MD as 

defined in Eq. 1), and this leads to very different sets of 
outliers. The red line represents the quantile cutoff value of 

2
975.0,31X =6.94 for the classification as an outlier. Based on this 

criterion, 7741 out of the 19,200 spectra were recognized as 
outliers by MD

MCD
 in comparison to only 3358 by MDclassic. It 

is worth noting that a multivariate outlier that is not an extreme 
value for any of the original variables (i.e., wavelengths) can 
still be an outlier if it is inconsistent with the correlation 
structure of the remainder of the data [10]. The dataset is 
divided into outliers and non-outliers for the next processing 
steps, which involve applying PCA to the non-outliers and 
clustering of the outliers. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Distance measures for the 19,200 Fruit and Flowers spectra: (a) 
Classic Mahalanobis distance MDclassic versus pixel number; (b) Robust  
distance MDMCD versus pixel number; and (c) MDMCD versus MDclassic. The 
horizontal and vertical lines represent the quantile cutoff value.  

Clustering the Outliers 
The outlier spectra are a part of the original dataset so we 

cannot simply ignore them. However, we can apply PCA to the 
non-outlier set and thereby get a better representation of it than 
of the entire dataset, and then represent the outliers separately. 
To represent the outliers, we group them into several clusters 
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Table I. Spectral and colorimetric accuracy of reflectance reconstruction of the Fruits and Flowers image using classic PCA 
and the proposed method. The errors of each step of this method are given separately. The final results obtained both with 
classic PCA and the proposed method are in the grey rows.
 

 
 

based on a similarity measure such that the spectra in each  
group are highly correlated. However, finding the number of 
appropriate number of clusters is an issue in itself. For this step, 
we used subtractive clustering as implement in Matlab’s 
subclust function to help determine the minimum number of 
potential clusters. This is done by gradually decreasing the 
number of clusters and calculating the corresponding mean 
RMS error in spectral reconstruction. As Fig. 2 shows, data 
clustering has a significant impact on the reconstruction error 
when the number of clusters is increased from 1 to 4. Beyond 4, 
the error goes down slightly until the number of clusters 
reaches 12, which is the optimal number of clusters as 
determined by subclust. Based on this analysis, we partitioned 
outlier spectra into 4 groups as a trade off between 
reconstruction accuracy and data redundancy (the more 
clusters, the more basis vectors that must be included in the 
data to be stored/transmitted). 

For the Flowers and Fruits spectra, using 4 clusters of 
outliers worked well.  The final clustering was done using k-
means clustering (kmeans from the statistics toolbox of Matlab 
[22]) with the number of clusters set to 4 and the cosine 
distance was chosen as the distance parameter. The cosine 
distance between two spectra is the cosine of the angle between 
them viewed as vectors. 

Spectral Compression  
For each cluster, PCA was used to reduce the dimension of 

the spectra from 31 to 3. In total, the whole dataset is 
partitioned into 5 clusters (counting the non-outlier set as a 
cluster). As a result, 15 basis vectors (5 clusters ×  3 bases) are 
required so the data from each cluster can be projected into its 
own 3D spectral subspace. The spectra are then reconstructed 
using the appropriate cluster’s basis. The reconstruction error is 

tabulated in Table I both in terms of spectral and color  
accuracy. Two spectral measures (RMS and Goodness of Fit 
Coefficient, GFC [23]) and two colorimetric measures 
(CIEDE2000 color differences under illuminants A and D65) 
were used.  

A comparison between the two rows of Table I highlighted 
in gray shows a considerable improvement in the spectral 
reconstruction using the proposed method in terms of both 
reduced spectral and colorimetric errors. As can be seen, 7741 
spectra detected by MD

MCD
 as outliers are removed from the 

main dataset during the first step. The spectral dimension of the 
remainder of the data labeled Central Cluster is reduced to 3 via 
PCA. The central cluster benefits from the fact that the outliers 
have been removed so the remaining highly correlated data is 
efficiently and accurately represented using only 3 dimensions. 

 
Figure 2. Mean of reconstruction error for the outlier spectra as a function 
of the number of clusters used. 

 #Spectra 
RMS 

 GFC  
*
00EΔ  

Mean Max D65 A 
Classic PCA       

Original Dataset 19200 0.0114 0.0744  0.9892  3.88 3.99 
         
Proposed Method 
1st Step         

Central Cluster 11459 0.0058 0.0209  0.9938  2.29 2.42 
Outliers 7741 0.0166 0.068  0.9905  2.99 2.86 
         
Proposed Method 
2nd Step         

Outlier (Cluster 1) 661 0.0050 0.0179  0.9964  1.31 1.50 
Outlier (Cluster 2) 3276 0.0100 0.0428  0.9977  1.83 1.40 
Outlier (Cluster 3) 2701 0.0092 0.0448  0.9988  1.18 1.15 
Outlier (Cluster 4) 1103 0.0075 0.0387  0.9980  0.84 0.71 
         
Proposed Method 
3rd Step 19200 0.0079 0.0448  0.9970  1.49 1.43 
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Table II. Spectral and colorimetric accuracy of reflectance reconstruction of four spectral images taken from the multi-spectral 
database [21] using classic PCA and the proposed method. 
 

 
#Spectra 

RMS 
 GFC  

*
00EΔ  

Mean Max D65 A 
Persilnonbio Image         

Classic PCA 77004 0.0137 0.0589  0.9969  1.48 1.21 
Proposed Method 0.0108 0.0317  0.9989  1.10 1.01 

Goaheadbars Image         

Classic PCA 94666 0.0089 0.0365  0.9944  1.54 1.41 
Proposed Method 0.0054 0.0204  0.9980  1.01 1.19 

Couscous Image         

Classic PCA 84216 0.111 0.0611  0.9934  2.08 1.64 
Proposed Method 0.009 0.0218  0.9981  1.43 1.31 

Elastoplast Image         

Classic PCA 35316 0.0145 0.0640  0.9937  2.07 1.82 
Proposed Method 0.0104 0.0280  0.9982  1.53 1.48 

 
 
 
The outlier spectra are partitioned and reduced to 3 

dimensions in the second step. As the clustering was performed 
based on a similarity measure, the spectra assigned to each 
cluster are again highly correlated leading to an efficient PCA-
based 3-dimensional representation.  

As Zhao et al. [3] point out, while high spectral 
reconstruction accuracy is important, in some applications such 
as digital image archives for museums, high colorimetric 
accuracy under various lighting conditions can also be 
important. The *

00EΔ  errors in Table I decrease by more than a 
factor of 2 when the proposed approach is used in place of 
standard PCA.  

As Table II shows, using the proposed method in place of 
classic PCA improves the reconstruction of the four multi-
spectral images from the Hordley et al. database [21] in terms 
of both spectral and colorimetric accuracy. 

Although multi-spectral image compression is beyond the 
scope of the present paper, it should be noted that, in addition to 
spectral redundancy, multi-spectral images typically include a 
high degree of spatial correlation. The proposed 3-step 
technique can be combined with image compression techniques 
for further data compression. For example, lossless JPEG2000 
compression of the 3-dimensional representation of the Fruits 
and Flowers spectra reduces the amount of space required by a 
factor of two without increasing the reconstruction error. 

Conclusion 
Large spectral datasets such as those provided by the 

spectra from a multi-spectral image can be represented in lower 
dimensions using traditional PCA [24]; however, often the 
datasets include spectra that differ markedly from the bulk of 
the dataset and this can lead to poor spectral reconstruction. 
The proposed method improves the efficiency of a model of 
any fixed dimension by separating out the outlier spectra and 
treating them separately. A separate PCA basis is used to 
represent each cluster of outliers. The outliers are identified  
 

 
 

using a robust Mahalanobis distance measure provided by the  
minimum covariance determinant. Tests show that the  
proposed 3-step method leads to lower reconstruction errors 
both in terms of spectral and color differences. 
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