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Abstract 
This paper evaluated four conventional methods for 

reflectance recovery: smoothness method [1], principle 

component analysis [2], basis functions with smoothness 

constraint [3] and Wiener estimation [4,5]. Most of these 

methods adopt a “learning-based” procedure with a training set. 

Modifications based on the training set were applied for 

improving the reflectance recovery performance. This paper 

described combined methods involving the application of 

localised training data and  localised training data with a 

weighted matrix to the four recovery methods [1-5]. All these 

methods were applied to recover reflectance from XYZ values 

for two datasets. Both the training and testing performance were 

evaluated in terms of CIEDE2000 colour differences. The results 

showed that the performance of the methods with localised 

training data significantly improved. There are also limited 

improvements by applying the weighted matrix. Overall, the 

localised weighted method (using a local training set with a 

weighted matrix) with Weiner estimation method performed the 

best. 

Introduction  
It is well known that a spectral match occurs when two 

samples have the exact same colour regardless of the illuminant 

or the observer involved. Therefore, the most accurate method to 

specify a colour is to directly measure the reflectance of the 

surface colours. Conventionally, spectrophotometer is widely 

used for measuring surface colours. In comparison with the 

conventional spectrophotometer, the digital camera is able to 

measure the curved or non-uniform surfaces by capturing the 

whole image of an object. Many researchers are working on the 

reflectance recovery from the captured images of digital 

cameras. Li and Luo [1] developed a method to recover 

reflectance with smoothness constraint. Sobagaki et al. [2] 

applied the principal component analysis to obtain three basis 

functions representing Munsell chips. Cheung et al. [3] applied 

the Li-Luo smoothness method with the basis function to 

recover reflectance. Babaei et al. [4] adopted Wiener estimation 

plus a weighted matrix for recovery of spectral reflectance. The 

aim of this paper is to find the best computation methods. 

Therefore, the reflectance was recovered from XYZ values by 

using these methods. Because the variations in sets of colour 

difference are non-normal distribution [6], their performances 

were evaluated in terms of median and maximum colour 

difference (∆E00) [7]. 

Reflectance Recovery Methods 
Four conventional reflectance recovery methods were 

implemented: smoothness method, basis function, basis function 

with smoothness constraint, and Wiener estimation methods. 

These are denoted as SC, BF, BF&SC and WE methods, 

respectively. All these methods require a training data set except 

the SC method. The training set can be a data set covering a 

large colour gamut or a localised data set with just few samples 

close to the target sample. These training samples can be also 

weighted by a weighted matrix i.e. larger weight for samples 

close to the target. 

Smoothness Constraint (SC) Method  
Li and Luo [1] applied the smoothness constraint condition 

to estimate the spectral reflectance. When colour samples are 

given in terms of tristimulus values C of objects (Ct=(X, Y, Z) , 

the transpose of the 3 by l matrix C where l is the number of 

given samples) under a particular light source and CIE standard 

colour matching function, the reflectance R of the samples can 

be estimated by solving the equation: 

C=MR (1) 

 

where C is a 3 × l matrix that each column vector relates to XYZ 

tristimulus values of each sample; R is a 31 × l matrix of 

reflectance values (ranging from 400 to 700nm in 10nm steps) 

corresponding to l samples; M is a k × 31 matrix that each 

column contains the wavelength by wavelength product of the 

spectral power distribution of the illuminant and the colour 

matching function of the CIE standard observer. Then, the 

smoothness constraint for the reflectance function was defined 

as: 
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where G is a n by n matrix and considered as an operator derived 

from the squared first derivative of spectral [8, 9]. 

Basis Function (BF) Method 
The objective of the basis function is to describe the vector 

space using low-dimensional linear models in terms of weighted 

sums of a small number of basis functions [10-12].  
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For a set of l samples having 31 points each, the matrix R in 

Equation (4) with the column vector hr
v

 represents the hth 

samples. Then, the principal component analysis (PCA) desires 

to represent each sample using subspace with n~  dimensions < n. 

Thus, the best recovery of the vector subspace with a number of 

vectors lower than the dimension of the vector space can be 

provided by the eigenvectors [13]. The eigenvectors are so 

called principal components and also known as basis function. 

The column vector hr
v

 representing the reflectance of the hth 

sample can be recovered by the linear combination of the 

principal components:  
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 (5) 

 

where Wh is a n × 1 column vector whose components are the 

weighted coefficients of the linear combination of the basis 

functions from the matrix U. In order to reduce the dimension of 

the vector space, the number of the basis function n~  can be 

chosen with n~  less than n according to the eigenvalues. Thus, 

the eigenvectors related to small eigenvalues can be deleted and 

Equation (5) becomes: 

nnwuwuwuWUr nnhh ≤≤⋅++⋅+⋅=⋅= ~1  , )...( ~~2211
vvvv

     (6) 

 

The practical application of PCA for spectral recovery has 

been carried out by several researchers such as Maloney and 

Wandell [14], Imai and Berns [15], Li and Luo [16], Shi and 

Healey [17]. The reflectance samples having 31 points with 

10nm interval from 400 to 700nm can be approximated by a 

weighted sum of basis function: 

 

WUR n~=                                                                                (7) 

 

where U is a  31 × n~  matrix consisting of the first n~  basis 

functions; W is a n~  × l matrix of weights. 

Basis Function with Smoothness Constraint 
(BF&SC) Method 

For many applications, the low-dimensional linear models 

for reflectance recovery whose dimensionality is less or equal to 

the number of camera channels are inadequate, especially for 

trichromatic camera with only three channels. Shi and Healey 

[17] provided an alternative ways to constrain the solution. 

Recovering reflectance from tristimulus values can be 

considered as a trichromatic camera with 3 sensors and requiring 

n~ -dimensional linear model, the eigenvectors can be divided 

into two parts: the first 3 principal components and the 

remaining n~ - k principal components. The former vectors 

establish the matrix of basis function U1, and the latter vectors 

placed in matrix U2 include the remaining basis functions. Their 

weight coefficient matrices are denoted as W1 and W2 

respectively. Then, Equation (7) can be expanded to: 

 

2211 WUWUR +=  (8) 

 

Equation (8) can be substituted into Equation (1) 

 

2211 WMUWMUC +=   (9) 

 

The W1 can be expressed in terms of W2 by multiplying 

(MU1)
-1 by both sides of Equation (9) and substituted into 

Equation (8), then Equation (8) can be simplified as 
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Following the method discussed in the SC method, the 

operator or smooth matrix denoted as G can be applied to  

Equation (10)  to have smooth estimations [3]. The smooth R 

can be obtained by minimizing |||| GR  or ||)(|| 2BWAG + . 

However, further constraint should be added to the minimisation 

to enforce each column vector hr
v

 between 0 and 1. When only 

three basis functions are applied, the BW2 is eliminated from 

Equation (10). Then the smoothness constraint is not working. 

Therefore, the number of basis functions should be greater or 

equal to 4 for the BF&SC method. 

Wiener Estimation (WE) Method 
In order to estimate R from C, a matrix W applied to 

transfer the tristimulus values to reflectance should be 

determined. 

 

WCR =  
 (12) 

In Wiener estimation [18, 19], the matrix W can be 

represented as [20]: 
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where WWE represent the matrix W derived by Wiener 

estimation; Kr denotes the covariance matrix of reflectance from 

the training set; Kn is the covariance matrix of noise. If the noise 

of different channels is independent, the Kn is a diagonal matrix. 

Then, the estimation of R from C denoted as Res can be obtained: 

 

CKMMKMKR n
T

r
T

res
1)( −+=  (14) 

 

As the principle component analysis, the Wiener estimation 

tries to minimize the mean square error between the actual and 

estimated reflectance. In this study, Kn = 0 is assumed. 

Localised Training Set 
The methods described above require a training set except 

the SC method. The training set could be the full data set or the 

selected L number of neighbouring samples. The neighbouring 

samples were determined by the smallest ∆E*ab from the testing 

sample with known tristimulus values under CIE D65 and 1964 

standard colorimetric observer. In the present work, the number 

of the neighbouring samples were investigated and applied to 

train the models. 

Babaei et al‘s Weighted Matrix 
Babaei et al. [4] modified the classical Wiener estimation 

method by introducing a weighted matrix Q. 
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where Q is a square and diagonal matrix, l is the number of 

samples in training set. The diagonal elements in Q are the 

inverse of colour difference values between the ith sample in the 

training set and the test sample. Samples which are closer to the 

target will have greater weights than those which are far from 

the target. The weighted Wiener estimation method is presented 

by multiplying the weighted matrix Q (which is unique for each 

particular test sample) by training set matrix: 

 

)cov(DQK rq =   (16) 

 

where D is 31 by l matrix regarding to the reflectance of the 

training set. Then, the normal covariance matrix in equation (14) 

is replaced by Krq 
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Equation (17) being the weighted form of Equation (14) has 

the identical dimensionality. For the BF and BF&SC methods, 

the reflectance functions of training samples multiplied by the 

weighted matrix are also applied in this research. 

Experimental 
Two datasets were collected: Munsell book of Color having 

1562 glossy paint chips [21], the Professional Colour 

Communicator (PCC) consisting of 1063 textile samples [22]. 

The reflectance samples were measured by the GretagMacbeth 

CE7000A spectrophotometer with the wavelength from 400 nm 

to 700 nm with 10 nm interval. The XYZ tristimulus values of 

all sets were calculated under D65 and CIE 1964 standard 

observer. The reflectance samples were recovered from these 

XYZ.  

 

 
Figure 1: Colour difference distribution of performance using Munsell train 

and Munsell test. 

To examine these methods, the effect of database is 

analysed using two different datasets which are used in different 

combinations as training and testing sets and the results are 

investigated. Each dataset was chosen as training as well as 

testing set in different sequences. First, Munsell was selected as 

training set, and PCC was chosen as testing sets. If the generated 

reflectance values exceed the range between 0 and 1, they are 

forced to equal to zero and one boundaries respectively. All 

recovered reflectance were evaluated in terms of CIEDE2000 

colour differences (∆E00) under A/10˚ and F11/10˚ conditions. 

Figure 1 shows an example of the colour difference distribution 

of the four tradition methods It can be seem that the distributions 

of CIEDE2000 colour differences are not normal distribution. 

Thus, the median and maximum values of ∆E00 were employed 

the median and maximum values as criteria. 

Effect of the number of basis functions and 
localisation set 

For the BF and BF&SC methods, the number of basis 

functions should be first determined. Figures 2(a) and 2(b) show 

the performance under A/10˚ in terms of median ∆E00 values 

with Munsell training set against number of basis functions. It 

can be seen that the ∆E00 values became stable above 10 and 15 

basis functions for both BF and BF&SC methods. The minimum 

of median ∆E00 with the BF method was obtained by 3 basis 

functions. For the BF&SC method, the best performance 

achieved with 4 to 6 basis functions. Therefore, the 3 and 5 basis 

functions were applied for the BF and BF&SC methods denoted 

as 3BF and 5BF&SC, respectively. 

 

 

 
(a)                                          (b) 

Figure 2: Effect of the number of basis function for (a) BF and (b) BF&SC 

methods in terms of median ∆E00 under illuminant A. 

Then, the localised training set was used to apply on the 

BF, BF&SC and WE methods. Figure 3 shows the median and 

maximum ∆E00 values plotted against the number of localised 

samples. For these three methods, both of the performance in 

terms of median and maximum ∆E00 became stable when 40 to 

60 samples were used. Therefore, the 50 localised samples were 

chosen for improving the basic methods. 

Tables 1 and 2 show the performance of four conventional 

methods, three basic methods with 50 localised training set 

denoted as 50Loc in parentheses, and that combined with a 

weighted matrix denoted as 50wLoc in parentheses. Both 

training and testing performances were evaluated. Best results in 

terms of median or maximum ∆E00 under the same training set 

modification method in each column is marked by a *. The SC 

method is not a learning-based method, so there is no need to 

define training or testing set. Without any training set 

modification, the 5BF&SC method gave lowest mean and 

maximum∆E00 units in most cases. The SC method with the 

advantage of no training set requiring gave the performance 

within 0.5 ∆E00 units from the best performance among these 

basic methods. For example, the best prediction for the Munsell 

set under illuminant A is 0.72 ∆E00 units with the WE method, 

and the SC method gave 1.05 ∆E00 units. 
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(a) –(1)                                      (b)-(1) 

 
(a) –(2)                                      (b)-(2) 

 
(a) –(3)                                      (b)-(3) 

Figure 3: Effect of the number of localised samples on maximum ∆E00 

under illuminant A (a) median (∆E00) (b) maximum(∆E00) – (1) BF (2) 

BF&SC (3) WE methods.) 

 

Table 1: Model Performance based on Munsell training set 

(median ∆E00 colour differences with maximum colour 

differences in parentheses), best performance is marked by 

an asterisk. 

Training Set 1562MunSI 

Testing Set 1562MunSI 1063PCC 

Testing Ill. A F11 A F11 

SC 
1.05 

(5.71) 

1.18 

(7.97) 
N/A N/A 

3BF 
1.01 

(5.70) 

1.27 

(7.20) 

1.23 

(5.33) 

1.10 

(5.77) 

5BF&SC 
0.88 

(5.32) 

*1.03 

(8.43) 

*1.16 

(3.73) 

1.03 

(4.45) 

Basic 

Method 

WE 
*0.72 

(5.74) 

1.12 

(7.25) 

1.51 

(5.15) 

*0.86 

(5.12) 

3BF 

(50Loc) 

*0.26 

(3.09) 

*0.40 

(5.38) 

1.47 

(5.07) 

*0.76 

(7.48) 

5BF&SC 

(50Loc) 

0.64 

(4.04) 

0.85 

(7.23) 

*1.26 

(4.20) 

0.86 

(4.18) 

With 

Localised 

Training 

data WE 

(50Loc) 

0.57 

(4.63) 

0.67 

(8.73) 

1.47 

(7.09) 

0.99 

(11.7) 

3BF 

(50wLoc) 

0.22 

*(3.2) 

0.33 

(6.23) 

1.52 

(5.17) 

*0.78 

(7.60) 

5BF&SC 

(50wLoc) 

0.60 

(3.75) 

0.79 

(7.16) 

*1.23 

(4.17) 

0.87 

(4.08) 

With  

Localised  

Weighted  

Training 

data 
WE 

(50wLoc) 

*0.21 

(3.26) 

*0.29 

(5.89) 

1.63 

(7.16) 

0.89 

(6.96) 

 

With the modification of 50 localised training set, the 

training performances were improved on all basic methods but 

the testing performances were not always better than the basic 

methods. When applying the weighted matrix on the 50 localised 

training set, most of these methods were further improved 

especially for the WE method (training performance under 

illuminant A with the PCC set gave 0.79 and 0.08 median ∆E00 

for WE(50Loc) and WE(50wLoc), respectively). The testing 

performance still does not always outperform than the basic 

methods, but it gave similar performance. For instance, the 

testing performance under illuminant A with the PCC set 

training and the Munsell set testing gave 1.29 and 1.31 median 

∆E00 for WE and WE(50wLoc), respectively. Comparing all of 

these methods, the WE(50wLoc) gave the lowest median 

perceptual errors in training performance. For the performance 

in terms of maximum ∆E00 units, the 5BF&SC(50wLoc) slightly 

better than that of the WE(50wLoc) method. Therefore, 

considering the overall performance, the WE(50wLoc) method 

is recommended. 

Note that when the PCC set used as training set for the 

3BF(50Loc) and 3BF(50wLoc) methods, the maximum ∆E00 

became extremely large. When the recovered spectrum is out of 

the boundary from 0 to 1, the values were clipped into the range 

and that caused extremely large colour difference. This also 

implied that three basis functions are not enough for the PCC set 

when using localised training modification. 

Table 2: Model Performance based on PCC training set 

(median ∆E00 colour differences with maximum colour 

differences in parentheses), best performance is marked by 

an asterisk. 

Training Set 1063PCC 

Testing Set 1063PCC 1562MunSI 

Testing Ill. A F11 A F11 

SC 
1.39 

(3.97) 

0.90 

(4.22) 
N/A N/A 

3BF 
*0.82 

(4.58) 

*0.86 

(6.04) 

1.23 

(5.84) 

1.52 

(9.76) 

5BF&SC 
1.24 

(3.71) 

0.87 

(4.10) 

*1.08 

(5.27) 

*1.00 

(7.98) 

Basic 

Method 

WE 
1.13 

(4.78) 

0.93 

(4.68) 

1.29 

(5.90) 

1.05 

(8.74) 

3BF 

(50Loc) 

*0.23 

(54.9) 

*0.28 

(69.3) 

1.39 

(45.1) 

1.04 

(43.6) 

5BF&SC 

(50Loc) 

1.03 

(4.97) 

0.73 

(5.85) 

*1.04 

(5.05) 

1.02 

(8.34) 

With 

Localised 

Training 

data WE 

(50Loc) 

0.79 

(8.17) 

0.73 

(4.92) 

1.32 

(9.70) 

*0.99 

(10.1) 

3BF 

(50wLoc) 

0.12 

(37.2) 

0.13 

(29.3) 

1.37 

(51.4) 

1.05 

(47.2) 

5BF&SC 

(50wLoc) 

1.16 

(4.01) 

0.67 

(4.69) 

*0.99 

(5.04) 

*0.98 

(8.22) 

With  

Localised  

Weighted  

Training 

data WE 

(50wLoc) 

*0.08 

(3.42) 

*0.09 

(5.43) 

1.31 

(5.27) 

0.99 

(8.63) 

 

Figure 4 shows an example of the reconstructed reflectance 

using the WE, WE(50Loc) and WE(50wLoc) methods. The solid 

line indicates the measured reflectance. The dash lines refer to 

the reflectance curved by these three methods. It can be seems 

that the WE(50wLoc) method had the closest curve to the 
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measured curve, followed by the WE(50Loc) method. The WE 

method performed worst. 

 

 

 
Figure 4: An example of reconstructed reflectance using WE, WE(50Loc) 

and WE(50wLoc) methods 

Generally, the results showed a big improvement of the 

conventional method by using a localised training set. However, 

it was also found little improvement by introducing the weighted 

method. This is because the reconstructed reflectance based on 

the localised training samples is already very close to the target 

sample, the weighted matrix has limited improvement. It can be 

concluded that the largest improvement is the localised training 

set. The autocorrelation matrix used in the WE method could 

effectively improve the recovery performance when the 

properties of the training and testing samples are similar. 

 

Conclusions 
 

Four reflectance recovery methods were investigated 

together with some modifications of the training set or 

application of weighted matrix. Without any modification on 

training data, the 5BF&SC method gave the best performance in 

most cases. For the SC method, the training set was not required 

and the performance is not dissimilar with the conventional 

methods. With modification on training set, the Wiener 

estimation method with localised training data and a weighted 

matrix generally perform the best. Regarding to the BF method, 

more basis functions should be used for PCC set. 
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