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Abstract

The purpose of this study is to get a color perception model
of dichromat. We construct a color perception model of dichro-
mat, and analyze the mechanism. Then we have prospect of find
human color perception mechanism. We expect it when we under-
stand mechanism of the color perception of the human beings by
construct and analysis a dichromat’s color perception model. We
construct a color perception model of color defects based on the
results of psychophysical experiments with optimizes the struc-
ture of neural network using genetic algorithm (GA). The neu-
ral network used in this paper is real valued flexibly connected
neural network (RFCN). RFCN, the evolutionary neural network
we previously proposed, is a model that can have high perfor-
mance in various fields. In RFCN, the structure of the network
and the parameter are optimized automatically and flexibly with
GA according to tasks we give. So we can obtain the network that
has desirable performance without special knowledge about the
task. We developed a model that can operate similarly to dichro-
mat’ s categorical color perception. The results showed that the

obtained neural network has similar characteristics to those of

. P
dichromat ~ s vision system.

Introduction

We can distinguish subtle differences between several sim-
ilar colors. On the other hand, a man uses rough color category
such as red or blue when he tells a color to others. This is cate-
gorical color perception that is used in the latter case. And then,
there is basic color category that does not depend on sensitivity or
a language. Berlin and Kay[1][2] examined more than 100 lan-
guages and concluded that eleven colors (white, red, green, yel-
low, blue, brown, orange, purple, pink, gray, and black ) are basic
color terms. Further, behavioral testing of chimpanzees has also
shown similar results[3]. Franklin and Davies found evidence
of categorical perception in some of these same boundaries in
pre-linguistic infants and toddlers of several languages[4]. Thus,
some categorical color distinctions apparently exist. From these
facts, it can be considered that there may be a mechanism cor-
responding to their color-names in basic categorical colors in
visual system. On the other hand, an object color is not only ex-
clusively distinguish by the reflection spectrum from the surface
object is but also greatly influenced by the ambient environmen-
tal conditions. We humans, however, can stably perceive an in-
herent an object color even reflection spectrum from the object
changes according to spectrum of ambient light. This is called
color constancy[5].

It can be said that categorical color the object appears un-
der various illuminants, which is determined not only by the re-
flected light spectrum of the object but also by the influence of
surrounding environment with color constancy. Yata e al. have
provided a categorical color perception system which is capable
to realize it[6]. That the relationship between the chromaticity of
color chips under different illuminations and human categorical
color perception for the color chips under the illumination can be
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learned by a structured neural network.

The purpose of this paper is to get a modeling system that
can operate similarly to Dichromat’s categorical color percep-
tion under various illuminants. We expect it when we understand
mechanism of the color perception of the human beings by con-
struct and analysis a dichromat’s color perception model. We
use a neural network as a model of categorical color perception.
The neural network used in this paper is real valued flexibly con-
nected neural network (RFCN)[7]. RECN, the evolutionary neu-
ral network we previously proposed, is a model that can have
high performance in various fields. In RFCN, the structure of the
network and the parameter are optimized automatically and flex-
ibly with genetic algorithm (GA) according to tasks we give. So
we can obtain the network that has desirable performance with-
out special knowledge about the task.

Real Valued Flexibly Connected Neural Net-
work(RFCN)

We develop a model that can operate similarly to dichro-
mat’s categorical color perception using artificial neural network.
The neural network as a model of categorical color perception
is Real Valued Flexibly Connected Neural Network (RFCN).
RFCN is a model that can have high performance in various
fields. In the RFCN, every network unit is provided with unique
characteristics. These characteristics include the input-output
function, its parameters, and the response speed, which are opti-
mized in the course of evolution. 1 illustrates an example of Phe-
notype (feed forward network structure) and Genotype (string
epresenting Phenotype) in RFCN. The connection weights and
unit characteristics are coded in the chromosomes. The chro-
mosome ~ s genotype is represented by a array of 0,1 genes. In
RFCN, the feedback structure is restricted in genotype level. The
nodes take their inputs from either the output of a previous node
or from the inputs in a feed forward manner. Therefore, it is pos-
sible to straightforward execution of network , and it does not
need the parameter of the number of step for feedback.

We used the following four types of input—output func-
tions: Threshold function eq. (1), Sigmoid function eq. (2), Lin-
ear functioneq. (3), Piecewise linear functioneq. (4).

.f(x)={ 5 0z (M
1
f(x)= T+ exp(—an) 2
f(x)=ox 3)
0 (<0
flx)= ox (0<x<l/a) 4)
1 (Ja<w

All these functions are widely used in neural networks.
However, the output units in our experiments must take values
in the range of 0.0 to 1.0, and therefore, only sigmoid functions
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Figure 1. An example of structure of RFCN.

and piecewise linear functions were used for the output units. In
addition, we used four values of the parameter ¢, namely, 0.25,
0.5, 1.0, and 2.0: that is, the same function could produce a dif-
ferent response depending on the parameter. As a result, a net-
work involved units with various responses, thus allowing more
complicated processing even though the connection weights are
restricted to the simple values +1, 0, and -1.

Every unit of the RFCN operates in a different way because
it is provided with a different response speed. In our experiments,
we use only two kinds of units in terms of response speed, fast
units and slow units.

A structure of the network and the parameter are optimized
automatically and flexibly with Genetic Algorithm (GA) accord-
ing to tasks we give. When the crossover operator is applied, the
crossover points are selected at random in the chromosome ’ s
rows and columns so as to divide a chromosome into four parts.
The blocks thus generated are then interchanged to implement
crossover. For each individual, the number of hidden units is
decremented or incremented at a mutation rate. In the case of
decrementing, the units to be removed are selected at random,
and the corresponding gene loci are deleted. In the case of incre-
menting, additional genes are inserted outside the chromosome.
Gene mutations occur at the gene level at a mutation rate. The
bits of mutated genes are inverted.

Experiments and Results

We can obtain the network that has desirable performance
without special knowledge about the task. The inputs of the
RFCN are cone visual cells * responses (L,S) or (M,S) which
are calculated from chromaticity of a illumination and that of a
sample color under the illumination. The outputs of the network
represent the categorical color—name of the sample color.

Training Data

Training data used by the neural network will be explained.
A training data set used in the embodiment is prepared by a psy-
chophysical experiment by which categorical color perception is
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Figure 2. Spectral distributions of illuminant.

measured under three types of illuminants. This experiment is
carried out by displaying 424 OSA color chips (an example of
color samples) one by one on a board of N5 (in Munsell color
system) gray under a illuminant by an LCD projector from the
ceiling. Table 1 shows correlated color temperature and CIE
(1931) xy chromaticity of the three types of the illuminants used
for this experiment. Further, Fig. 2 shows spectral distribution of
these illuminants.

Appearance of a color of displayed stimulus is measured by
a categorical color naming method. According to this method,
among eleven basic categorical colors, one color-name which
represents the best appearance of each color chip under each il-
luminant is answered.

The test subjects are four as S1, S2, S3, and S4. S1 and S2
are protanopes. S3 and S4 are deuteranopes.

A number of examinees are four, two sessions are exper-
imented with the each illuminants, naming 424 kinds of color
chips in one session, and then 3 illuminants x 2 times = 6 ses-
sions are experimented. Accordingly, training data of 3 illumi-
nants x 424 = 1272 sets are prepared.

Each of the input data for the test color component were
converted from luminance Lum and CIE(1931)xy chromaticity
coordinate (x,y) of the OSA color chips measured under each
of the illuminants[8]. Cone responses were calculated based on
Judd modification of CIE color—matching function for the CIE
1931 Standard Colorimetric Observer[9]. Namely, conversion to
(L,M,S) cone response values according to eq. (5).

L 0.15514  0.54312 —0.03286 X
M |-| —0.15514 0.45684  0.03286 Y )
S 0 0 1 z

The input data for the illuminant component are similarly
converted from the measured value Lum and (x,y) of the illumi-
nant to (L, M, S) cone response values. The obtained (L, M, S) are
used for input data by normalizing between [0, 1].

For training data for outputs, real numbers are used, which
are obtained by normalizing to [0, 1] a color-name using a rate
which shows how many times a certain basic—color—name is used
for appearance of a certain color chip out of answers of each par-
son x 2 sessions obtained as a result of the experiment. By mak-
ing the network learn such a training data, the RFCN learns a
mapping performed by Dichromat from the LS or MS cone re-
sponses to the names of basic categorical colors as a computation
task.
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CIE(1931)xy—chromaticity of illuminants.

Correlated color
llluminant | xy—Chromaticity
0 (3000K) (0.439, 0.410)
w (6500K) (0.313, 0.332)
b (25000K) | (0.255, 0.252)

The parameters used in the experiments.

Parameter | Value
Generation alternation model MGG*
The number of generations 300000
Population size 150
Child size 30
Uniform crossover rate P, 0.5
Crossover rate 0.7
Mutation rate P, 0.001
The maximum number of units 50

*Minimal Generation Gap[10]

Experimental setup

We use a RFCN as a model for each subject. The inputs
of the networks are cone visual cells * responses (L,S) or (M,S)
which are calculated from chromaticity of a illumination and that
of a sample color under the illumination. The outputs of the net-
works represent the categorical color—name of the sample color.
The parameters used in experiments are given in Table 2.

The fitness F of each individual was calculated as follows:

n e
F:IO*NJr(lfN) (6)

where 7 is a times of output correct color name, NN is a num-
ber of data set, and e is a value of error (distance between output
values and training data).

Experimental results

The learning result will be explained. The color-names
which answered by S2 shows in Fig. 3,5,6. Output of network
for S2 shows in Fig. 4,7,8 A point is drawn on a specific coordi-
nate on j — g plane in OSA space by a color—name of subject’s
answeror output of network.

To confirm that learning was corrected, the same input val-
ues as ones of the learning data set are inputted to the obtained
neural network and the output is checked. Table.3 shows match-
ing rate between outputs of the trained network and the training
data. We see from table.3 that the training has been finished suc-
cessfully.

CONCLUSION

To get a modeling system that can operate similarly to
Dichromat’s categorical color perception, the relationship be-
tween the chromaticity of color chips under different illumina-
tions and the color chips’ categorical color perception under the
illumination that is the product of a categorical color naming ex-
periment was learned by RFCN. Experimental results show that
the obtained RFCN has the similar input-output response to those
of Dichromat’s vision. The relationship between chromaticity of
color chips under different illuminations and categorical color—
names for the Dichromats under the illuminations were learned
with RFCN.
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The number of correct answer for each subject using RFCN.

0 w b total
S1 | 74.3% | 88.0% | 80.7% | 81.0%
S2 | 781% | 75.7% | 75.9% | 74.9%
S3 | 71.7% | 75.5% | 82.8% | 76.7%
S4 | 69.8% | 81.6% | 78.1% | 76.5%
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