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Abstract 
The problem of object or scene recognition is often 

addressed by seeking geometric image properties that are 
invariant under changes in viewing conditions. An alternative, 
non-geometric, ratio method was described by Funt and 
Finlayson (IEEE Trans. Pattern Anal. Mach. Intell. 17,522, 
1995) in which histograms of spatial ratios of colour RGB 
triplets from neighbouring image regions were used to 
recognise objects under changes in viewpoint and illumination. 
In this study, ratio indexing was extended from RGB images to 
hyperspectral images with a variable number of sensor 
channels distributed over 400-720 nm. Fifty natural scenes 
were used to generate test and reference images. For each 
number of sensors, independent random samples were drawn 
from each test image of a scene under either a daylight of 
correlated colour temperature of 25000 K or of 4000 K and 
matched against independent random samples drawn from each 
reference image of the scenes under a daylight of correlated 
colour temperature 6500 K. Matching was based on the 
intersection of multi-dimensional histograms of ratios of sensor 
signals in these samples Differences between match hit and 
false-alarm rates provided a measure of recognition 
performance. Results suggest that for small samples, indexing 
with five sensor channels has advantages over indexing with 
three sensor channels for the recognition of natural scenes. 

Introduction  
Object recognition methods are predominantly based on 

geometric image properties that, in principle, are invariant 
under changes in viewpoint. By contrast, approaches to 
recognition based on colorimetric properties depend little on 
viewpoint. One such method—colour indexing—was 
developed by Swain and Ballard [1], who used colour 
histograms and histogram intersection to determine matches 
between test and reference images obtained under different 
viewing conditions. The colour axes used for the histograms 

were opponent and non-opponent combinations of the red, 
green, and blue components of the triplets (r, g, b) at each 
point. The method was generally robust to variations in 
viewpoint and scene background, but had limited invariance to 
changes in illumination, as the red, green, and blue components 
were simply normalized by their sum.  

Funt and Finalyson [2] improved the illumination 
invariance of colour indexing by replacing the red, green, and 
blue components of the triplet (r, g, b) at a point by the 
corresponding triplet of spatial ratios defined across adjacent 
points; that is, (r1/r2, g1/g2, b1/b2) for points 1 and 2 (they 
actually used a Laplacian or first directional derivatives of the 
logarithm of the colours). Such spatial ratios are relatively 
stable under changes in illumination [3], although not exactly 
invariant. Funt and Finalyson [2] noted that if the sensor 
spectral sensitivities were broad, as with the cone 
photoreceptors of the eye, then indexing performance was 
worse, but by transforming spectral sensitivities so that they 
were spectrally narrower or sharper [4], almost perfect indexing 
performance could be obtained with their test and reference 
images. These were Mondrian-like, abstract coloured patterns 
under different illuminations. Somewhat lower performance 
was obtained with images of real objects [2]. 

Whether spectral sensitivities are broad or narrow, 
however, there is a more general problem with using three 
sensor spectral sensitivities, in that according to some 
behavioural measures [5, 6], reliable surface identification by 
spectral sampling requires more than three degrees of freedom, 
in particular with natural scenes of the kind illustrated in Fig. 1.  

In principle, increasing the number of sensor classes over 
the available wavelength range should increase the reliability of 
the colour signal by reducing the number of false matches, and 
therefore produce better recognition performance. On the other 
hand, more sensor classes might reduce the number of correct 
matches and increase the level of noise. 

Figure 1. Eight of the 50 natural scenes used in this study (adapted from Fig. 2 of Ref. [8]). 
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Figure 2. Examples of spectral sensitivities of simulated variable-channel system with (a) 2, (b) 3, and (c) 7 sensor channels, and of the spectral 
sensitivities of (d) a Nikon D1 camera, (e) the CIE photopic luminance function, and (f) the spectral sensitivities of the cone fundamentals. 

The aim of this work was to determine how many sensor 
channels are needed for the reliable recognition of scenes under 
different illuminations when test and reference images are 
sparsely and independently sampled. Sparse independent 
sampling was used to capture the spatial uncertainties that, 
under other imaging conditions, could arise by occlusion or 
change in viewpoint.  

The analysis was based on 50 natural scenes, represented 
as hyperspectral images. Each scene was simulated under 
daylight illuminants with different correlated colour 
temperatures (CCTs). Unlike the procedure adopted in [2], 
where spatial ratios were drawn from neighbouring points in 
the scene, spatial ratios were here obtained by taking signals 
from pairs of points chosen at random across the scene. It was 
found that with small sample sizes, recognition performance 
increased with the number of sensor classes, but reached a 
maximum with five classes. 

Methods  

Scenes 
Eight of the 50 natural scenes are shown in Fig. 1 and 

thumbnail illustrations of some of the larger set are available in 
Ref. [7]. Details of how the hyperspectral data were obtained 
and of their accuracy are given in Ref [8]. Each hyperspectral 
image had spatial dimensions ≤ 1344 × 1024 pixels and spectral 
range 400–720 nm sampled at 10-nm intervals, thereby 
providing a discrete representation of an effective spectral 
reflectance R(λ; x, y) at each wavelength λ and position (x, y) in 
the scene. The effect of illuminating the scene by a particular 
illuminant with spectrum E(λ) was simulated by multiplying 
R(λ; x, y) at each point (x, y) by E(λ). The assumptions and 
approximations involved in this approach have been discussed 
in Ref [8, Appendix A]. Because of the approximately 1.3-pixel 

line spread function of the camera system used to acquire the 
hyperspectral data [8], only non-adjacent pixels were spatially 
sampled. 

Daylight spectra were simulated from those described by 
the CIE [9] with CCTs of 4000 K, 6500 K, and 25000 K, 
characteristic of the sun and sky at different times of the day.  

Spectral Sampling 
A sensor system with a variable number n of sensor 

channels was simulated by taking the average bandwidth of a 
commercial RGB sensor (a Nikon D1 digital camera [10]), and 
then replicating a triangular spectral sensitivity with this 
bandwidth at evenly spaced points over the visible spectrum, as 
illustrated in Fig. 2 for three examples, with (a) two, (b) three, 
and (c) seven sensor channels. The maximum number of sensor 
channels possible in the present simulation was limited to 
seven, owing to limits on computer calculations with 
histograms of more than seven dimensions. No attempt was 
made in this analysis to optimize the spectral locations of the 
sensors according the characteristics of the scene being 
sampled. For comparison, the sensors of (d) a Nikon D1 
camera, (e) the CIE photopic luminance function [9], and (f) the 
spectral sensitivities of the cone photoreceptors, i.e. the cone 
fundamentals [9], were also used. 

Spatial Sampling 
Spatially random samples of size N = 10 and N = 100 points 
were taken from images of scenes under a daylight of CCT 
4000 K or 25000 K to act as test sets and from images of scenes 
under a daylight of CCT 6500 K to act as the reference set. 
Critically, the spatial samples in the test and reference sets were 
drawn independently.  
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Figure 3. Recognition performance as a function of the number of sensor classes. Values of the discrimination index d' [11] are shown for the simulated 
variable-channel system (open circles); for Nikon D1 sensors (filled circles); the CIE photopic luminance function (diamonds); and the cone fundamentals 
(triangles). For each number of sensors, independent random samples were drawn from each image of a scene under either a daylight of CCT 25000 K or 
4000 K and matched against independent random samples drawn from each image of the scene under a daylight of CCT 6500 K. Matching was based on 
the intersection of multi-dimensional histograms of ratios of sensor signals in these samples. The data points show the results of 20 such samples, each 
averaged over 50 natural scenes. The continuous curve represents mean d' over the 20 samples for the variable-channel system. Data based on 10 image 
points per sample. 

Ratios of sensor signals were obtained as follows. At each 
scene point i = 1, 2, …, N of the sample, let qi = 

1 2( , ,..., )n
i i iq q q be the n-tuplet of sensor responses in classes 1, 2, 

…, n, and let (q1, q2, …, qN) be the N-vector of these n-tuplets. 
Let σ be a random permutation of the points 1, 2, …, N. Then 
the set of sample ratios consists of the (unordered) set of N 
values {q1/qσ(1), q2/qσ(2), …, qN/qσ(N)}, where each of the 
quotients qi/qσ(i) is given by ( )1 1 2 2

( ) ( ) ( )/ , / ,..., /σ σ σ
n n

i i i i i iq q q q q q .  
Histograms H were formed from these sets of ratios, but 

with unequal bin sizes to accommodate the nonuniform 
distribution of ratios from a uniform distribution of colours, as 
in Ref. [2]. 

Histogram Intersection 
Let Ha be the histogram based on N points from a test 

image of scene a under a daylight of CCT 4000 K and let Hb be 
the histogram based on a different set of N points from a 
reference image of a scene b under a daylight of CCT 6500 K, 
where a may or may not coincide with b. The goodness of a 
match is defined [1] by their intersection I (Ha, Hb); that is, 
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where j indexes the bins used to form the histograms. 
Necessarily, 0 ≤ I(Ha, Hb) ≤ 1. 

Discrimination index 
With 50 scenes, there are 50 possible correct matches, i.e. 

the test and reference samples come from images of the same 
scene, and 50×49 = 2450 false matches, where the test and 
reference samples come from images of different scenes. Let 
HR be the match hit rate defined by the mean of I(Ha, Hb) over 
the 50 correct matches and let FAR be the match false-alarm 
rate defined by the mean of I(Ha, Hb) over the 2450 false 

matches. As intimated earlier, both HR and FAR were expected 
to vary with the number of sensor channels. Thus, as the 
number of sensor channels increases, the conditions for a match 
become more demanding, and so the hit rate should decrease 
but so also should the false-alarm rate. The true level of 
recognition depends on the difference between the two, 
although this needs to be expressed on a scale that takes into 
account the limitations of the measure, i.e. intersection, which 
as a proportion varies between 0 and 1. 

One common approach is to summarize the difference 
between HR and FAR by the discrimination index d' from 
signal-detection theory [11]; that is, d′ = Φ−1(HR) − Φ−1(FAR), 
where Φ is the normal cumulative distribution function. This 
index has the advantage of both linearizing proportions and 
reducing the effects of bias. 

Results 
Figure 3 shows discrimination index d' plotted against the 

number of sensor classes of each type. The separate data points 
represent results from 20 independent samples of 10 points 
drawn randomly from the images. The continuous curve 
represents the mean d' over the 20 samples for the variable-
channel system. The two plots are for test images obtained 
under a daylight of CCT 4000 K and under a daylight of CCT 
25000 K matched against reference images obtained under a 
daylight of CCT 6500 K.  

Figure 4 shows similar results for data from independent 
samples of 100 points drawn randomly from the images. 

The interpretation of differences in d' values with different 
numbers of sensor classes is complicated by the constraints 
imposed by the number of scenes being sampled (the more 
scenes there are, the greater FAR even though HR remains 
constant). Importantly, however, the dependence of mean d' on 
the number of sensor channels in the variable-channel system 
appears to peak with five sensor channels, after which it levels 
off and possibly declines with six and seven sensor channels. 

 
 

CGIV 2012 Final Program and Proceedings 281



 

 

 

Figure 4. Recognition performance as a function of the number of sensor classes. Details as for Fig. 3, but data based on 100 image points per sample. 

Discussion  
With just one sensor channel of the simulated variable-

channel system, there was little difference in performance 
between it and the CIE photopic luminance function, both 
yielding chance levels of scene recognition. But as expected, as 
the number of channels in the variable-channel system increased, 
recognition performance increased. With three sensor channels, 
there was little difference between its performance and that of 
the Nikon sensors and of the cone fundamentals. As the number 
of channels in the variable-channel system increased beyond 
three, performance continued to increase but reached a 
maximum with about five channels. The failure to increase 
further may be due to several factors. One possibility alluded to 
earlier is a decreased signal-to-noise ratio with more channels; 
another possibility is the potential confound introduced by 
summarizing recognition performance by a single measure when 
both match hit rate and match false-alarm rate are varying. In 
any event, with small samples, it seems that indexing with five 
sensor channels has advantages over indexing with three sensor 
channels for the recognition of natural scenes. 

As noted in the Introduction, spectral sampling with any set 
of sensors can be improved by spectral sharpening [2], which 
can of course be extended to four or more sensor classes. In so 
far that spectral sharpening narrows spectral sensitivities, and 
thereby increases invariance to changes in illumination, any 
improvement in recognition performance should persist with 
four or five sensor channels. 
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