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Abstract 

Colour constancy algorithms range from image statistics-
based pixel intensity manipulation to gamut-mapping methods, 
and are generally independent of specific image contents. In 
previous work, we have demonstrated that natural polychro-
matic surfaces possess distinct chromatic signatures in cone-
contrast space that may be exploited for colour constancy, and 
that in human vision, colour constancy is improved for such 
objects. Here we set out to use the specific, recognisable, and 
ubiquitous content of human skin in colour images to drive a 
gamut mapping method for colour constancy.  We characterise 
variations in the chromaticity gamut of varying types of, pre 
recognised, human skin (male, female; Caucasian, African, 
Asian) under varying illumination. We use a custom-built LED 
illuminator to produce daylight metamers, and a spectroradi-
ometrically calibrated hyperspectral camera (Specim V10E) to 
acquire images and create a novel hyperspectral skin image 
database. We demonstrate that human skin gamuts in cone-
contrast space are characterised by a set of features that can be 
used to differentiate between similar illuminations, whose esti-
mate can then be used to colour correct an image. 

Introduction 
The mechanisms of colour constancy built into human 

vision enable object colours to remain roughly constant across 
changes in illumination. RGB-based camera systems are not 
natively colour constant, recording different RGB triplets for 
the same object under different illuminations, and it therefore 
remains a goal for colour image processing to develop and 
implement constancy algorithms that mimic human perception 
in correcting for changes in illumination. Over the past 40 years 
a number of approaches have been used to tackle the challenge 
of colour constancy in both computer vision and photography, 
ranging from image statistics-based pixel intensity 
manipulation to gamut mapping methods [3]. Gamut mapping 
methods typically use the entire image regardless of image 
content, while “white-balance” methods typically use a 
reference surface selected on the basis only of its pixel intensity 
values. “Max-RGB” or “normalise-to-white” algorithms, for 
example, assume that the pixels of highest intensity in each 
channel represent the highest possible reflectance in that 
channel, and therefore, would be white under a white 
illumination.  In-camera “white-balance” methods may also 
require the user to set an arbitrary colour correlated temperature 
(CCT) value (at times annotated with more natural language 
labels, such as ‘cloudy’). If the highest-intensity pixels do not 
correspond to white reflectances, or the actual illumination does 
not match the selected correlated colour temperature, the 
algorithm will not adequately reproduce human perception of 
the scene.  The inadequacies in these methods are often most 
noticeable in the colours of the most familiar objects, such as 
people and their skin. Here we propose to use the information 
contained in the images of these specific familiar objects to 
estimate the illumination incident on them, and, under the 
single source assumption, on the entire scene. We use a 

modified gamut-mapping algorithm that operates on the 
chromaticity gamut of only a selected portion of the image.  

Forsyth’s original gamut-mapping algorithm [4] assumes 
that the canonical gamut of a given scene is known.  The 
algorithm takes the chromaticity gamut of the scene under an 
unknown illumination and calculates the most likely mapping 
that transforms its convex hull into the convex hull of the 
canonical gamut. The selected transform is the one that satisfies 
all of the possible point to point transforms between the two 
gamuts. The approach is illustrated in Figure 1 below. 

 

 
Figure 1. Visualisation of Forsyth’s algorithm 

For scenes that contain a complete sampling of all possible 
natural surfaces, the canonical gamut is complete and 
unchanging, but for scenes that contain biased samplings, the 
canonical gamut may itself be unknown. Thus, like the grey-
world and white-balance algorithms, the original gamut-
mapping algorithm falters when the image contents fail to 
match the assumptions. We suggest that knowledge of the 
actual image contents may therefore be useful in constraining 
gamut-mapping methods.   

Tominaga and Wandell [5] proposed a further development 
in the form of a gamut correlation algorithm for a specific set of 
natural images [6]. The algorithm compares incoming gamuts 
with memory gamuts (both in the RB color space) stored in an 
image database, choosing as a match the stored gamut which 
has the highest correlation to that of the test image. Figure 2, 
along with Equations 1-4, outline the correlation algorithm.  

The restrictions on the incoming images, and on the 
database itself eliminates the problem of mismatch between the 
canonical collection of surfaces and the image contents. For 
general use, though, gamut-mapping methods will nonetheless 
always face the challenge of constructing a database that 
adequately accounts for all possible materials, configurations 
and illuminations encountered in unbounded images.  One 
possible solution would be to focus the database on one specific 
feature class, or object type, and build it comprehensively.   
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Figure 2.  Depiction of the Tominaga-Wandell correlation algorithm 

Correlation; 
ri = (AIi/(√AIAi))      (1) 

     
Where; 
AIi = AI ∩ Ai       (2) 

     
AI = Area of test image gamut    (3) 

  
Ai = Area of illuminant reference gamut    (4) 

 
 
Here we propose human skin as the object of focus, due to its 
recognisability and near ubiquitous nature in photographic 
images.  

Previous work in computer vision has extensively 
examined skin colour as an identifying feature for face 
detection and tracking [7,8] or for image classification [9], and 
in this context, there is a driving goal to find illumination-
independent representations of skin colour  [e.g. 8]. Here, we 
do not propose a skin detection algorithm per se, but rather 
assume that skin detection has already been performed, for 
example, by a face detection algorithm, and that once identified, 
the characteristics of the observed skin colour may be used to 
drive a colour constancy algorithm for the entire image. A 
similar approach has been attempted in [10] and [11]. However, 
as with most previous work, these approaches are based in 
RGB or RGB derived spaces, e.g. HSV space [11] for scene 
classification. The use of general images in uncontrolled 
environments here leads to real problems in discovering the 
ground truth gamuts for the stated objects (skin, vegetation and 
sky-sea). Here we propose to analyse image data in a 
physiological cone-contrast space, reasoning that this space is 
likely to have been naturally optimised to encode skin colour 
variations. We also hypothesise that the human visual system 
may use skin colour to drive colour constancy, since rapid 
object-recognition processes are known to occur in human 
vision, which could mediate the initial step of identification and 
segmentation of skin areas [12].  

We specifically explore the idea that the distribution of 
chromaticities, in a known skin sample, may provide sufficient 
information to estimate the unknown illumination on the scene, 
as in [13]. We start from our previous observation [1] that the 
chromaticity distributions of natural polychromatic surfaces 
such as fruits and vegetables form regular signatures in the 

physiological cone-contrast space. These signatures exhibit 
invariant features (e.g., hue angle) under changing illumination, 
which may mediate their constancy to the human visual system. 
The signatures also vary in predictable ways under changing 
illumination, suggesting that signatures of familiar objects may 
be exploited to recover information about an unknown 
illumination, and thereby aid colour constancy for unfamiliar 
objects under the same illumination. Empirically, we have 
shown that colour constancy is indeed improved for naturally 
chromatically variegated familiar objects, compared with 
chromatically uniform familiar or unfamiliar objects [2]. Here 
we observe that, in human vision, one’s own skin provides an 
omnipresent, familiar reference surface. We then aim to 
determine whether features of the skin chromaticity 
distributions, as represented in the physiological colour space 
used by the human visual system, contain sufficient information 
to estimate unknown illuminations. The idea that human skin 
may provide a reference surface for chromatic adaptation, and 
thereby mediate colour constancy, is not new [14]. Previous 
implementations of the idea have relied, though, on mean skin 
chromaticities only, effectively using the mean chromaticity to 
provide the white point against which other image 
chromaticities are referenced. Here we explore whether the 
additional information contained in the inherent spread of 
chromaticities of bare skin provides additional support for 
colour constancy.  

Outline of the method 
As previously mentioned, we examine the feasibility of 

illumination estimation from skin chromaticity gamuts on the 
assumption that skin regions have already been identified. The 
first step is to form a reference set of skin chromaticity gamuts. 
To obtain accurate representations of the chromaticity 
variations in cone-contrast space,  and to obtain ground-truth 
information for both reflectance and illumination spatial 
variations, we use hyperspectral imaging to create a hand image 
database. We then characterize the chromaticity gamuts of each 
skin sample in terms of a set of features, creating a reference 
feature look up table (FLUT).   Lastly, we devise and test  two 
illumination estimation methods, explained in the cost function 
algorithm section, with a set of test images. These test images 
include some used to create the reference FLUT, as well as 
‘blind’ images taken under illuminations not used in the 
creation of the FLUT, in order  to test whether our set of 
features can be used to closely estimate and match (in terms of 
CCT) the unknown illumination in a scene to one of our known 
illuminants. The workflow is as follows: 

 
1. The first stage is the creation of the FLUT, 

consisting of the aforementioned chromaticity 
gamut features across different illuminations for 
a range of skin types. As a single example, this 
would entail saving the differing gamut areas for 
the same patch of skin across a range of 
illuminations.  

2. A new image, under an unknown illumination, is 
then received. The skin type is identified, and a 
section of skin is processed in order to produce 
its chromaticity gamut. 

3. The features from this skin patch under 
unknown illumination are then compared to the 
features stored within the feature LUT, using the 
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cost functions which are described in the 
following sections. 

4. The reference illumination with the lowest 
feature error between itself and the incoming 
gamut is then selected from the database as the 
estimate. 

 
In the following sections, we elaborate on each of these 

steps in the workflow. 

Hyperspectral Hand Image Database 
To obtain accurate records of the variation in colour across 

a single skin sample we use a photometrically calibrated 
hyperspectral camera (Specim V10E) to record image 
irradiance spectra at 2-nm intervals at each pixel. We have 
initially acquired hyperspectral images of hands from 8 
different human subjects, spanning a range of geographical 
origins (see Table 1), and are continuing to expand the database 
with additional subjects. For each subject, we have acquired 
hyperspectral images of the hand under 39 distinct 
illuminations, produced by a custom-built LED illuminator that 
provides diffuse light over a large surface area (Mackiewicz et 
al., CGIV 2012, accepted). The future potential regarding the 
use of hyperspectral imaging in colour constancy research is 
shown by [15]. These illuminations range from CIE D type to F 
type and into other highly chromatic lights. Figure 3 below 
illustrates the locations of the white-surface chromaticities of 
the illuminations used in this database on the CIE 1931 xy 
chromaticity diagram. In this report, we compare results for 
skin gamuts from ten CIE D type of illuminants, ranging from 
D40 (yellowish) to D250 (bluish). This range ensures that each 
illuminant has a large degree of similarity to its neighbours, 
posing a particular challenge for a method to differentiate 
between possible illuminations, whilst also encompassing a 
noticeable change in chromaticity. 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 3. The database illuminations in CIE 1931 xy space 

 

 

 

Table 1: Subject skin types. 
Subject Geographical/racial origin 
1 Caucasian  
2 Caucasian 
3 Tanned Caucasian 
4 Indian sub continent 
5 North African 
6 East Asian 
7 West African 
 
The choice to base this work upon hyperspectral imaging 

instead of traditional RGB imaging is driven by the level of 
information which is captured by a hyperspectral imaging 
system in comparison to that captured by a traditional digital 
camera with a Bayer or Foveon RGB sensor. As stated earlier, 
the underlying inspiration of this work is the regularity of 
chromatic signatures of natural objects in physiological colour 
space. In order to reconstruct the physiological data accurately, 
we need to maximise the amount of spectral information 
captured before conversion into cone-contrast space. It is also 
possible to characterise and calibrate conventional RGB 
cameras with 8-bits per channel in order to recover estimates of 
cone-contrast coordinates, but the estimates are  less accurate, 
and the ground-truth information about surface reflectance 
functions and illumination power spectrum is lost.   

Skin chromaticity gamuts in cone-contrast 
space 

From the hyperspectral image database, we extract from 
each image a rectangular patch of human skin (here, 25x25 
pixels, although the exact size of the patch does not affect the 
results). To obtain the skin chromaticity gamut, we convert the 
irradiance spectrum at each pixel into CIE XYZ tristimulus 
values and thence into cone-contrast coordinates, using the 
Eskew et al. formula [16] and the method described in [1]. We 
then find the convex hull of the set of surface chromaticities in 
cone-contrast space.  In the cone-contrast equiluminant hue 
plane, the two axes plot the cone-opponent contrasts with 
respect to the neutral adaptation point (0,0), i.e. the RG  (“red-
green”) axis plots the contrast of the (L-M) cone-opponent 
excitation with respect to the (L-M) excitation of the neutral 
adaptation point, and the BY (“blue-yellow”) axis plots the 
contrast of the (S-(L+M)) cone-opponent excitation with 
respect to the (S-(L+M)) excitation of the adaptation point. In 
the algorithm, we compute the average chromaticity of a known 
neutral patch in the image to provide the neutral adaptation 
point, although an equally plausible adaptation point would be 
the average of the entire scene. The human visual system is 
known to adjust its neutral adaptation point dynamically in 
response to a space-time averaging of light signals over the 
scene.   Figure 4 illustrates two sample skin chromaticity 
gamuts in cone-contrast space obtained from the same human 
hand in the same scene, under two distinct illuminations, 
together with the irradiance spectra from the same hand 
location in the two images.  

Note that the chromaticity gamuts form regular clusters in 
the cone-contrast space, occupying similar territory at similar 
orientations under two very different illuminations. A similar 
regularity in LMS cone space is predicted by a physics-based 
model of human skin colouring [17]. 
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Figure 4. The variation of gamut characteristics across two illuminations. 
(a) Images of the hand patches under two illuminations, (b) the spectral 
power distributions of the two illuminations and (c) the gamuts of the same 
patch under two illuminations.  

We analyse and describe the characteristics of the 
chromaticity gamuts using the following measurements: angle 
and radius of the centre of mass and extreme points of the 
convex hull, and planar area of the convex hull.  Although here 
we focus on the RG-BY hue plane only, in the full description, 
we compute and store these measurements in each of the three 
planes of physiological colour space: RG-BY (hue), RG-Lum 
and BY-Lum, where Lum is the luminance contrast (L+M) 
relative to the neutral adaptation point. Figure 5 illustrates these 
features on an example gamut:         

 
Figure 5. Characteristics of the chromaticity gamut. 

Variations in skin chromaticity gamuts with il-
lumination 
Figure 6 illustrates, for two subjects, the set of chromaticity 
gamuts for seven selected illuminations (D40, D50, D80, D100, 
D150, D200 and D250) in the RG-BY plane. The results  
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Figure 6. Skin gamuts for two subjects across 10 daylight illuminations 
(Legend is correct for both plots).  
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presented here draw on a greater set of 10 gamuts for each of 
the 7 subjects in Table 1 (with missing values of D150 for 
Subject 6, and D80, D120 and D150 for Subject 7).  On visual 
inspection of Figure 6, it is clear that despite the difference in 
mean chromaticity of the two skin samples, for both subjects 
the hue angle is similar and varies little across illumination, 
while the gamut area varies systematically with illumination. 
Quantitatively, although the range of variation in hue angle 
across illuminations is small (76-87 degrees), it is significant 
(F(9,69) = 2.22, p < 0.05).  The variation in hue area is highly 
significant (F(9,69) = 5.25, p < 0.0005),  as illustrated in Figure 
7. From the analysis of these collected features the features 
which give the greatest cue to illumination (i.e. those which 
change in the most visible/ predictable manner) were used to 
create the cost functions laid out within the next section.        
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Figure 7. Variation of gamut area for each subject across the range of 
illuminations. Each colour represents a distinct subject. 

Cost function algorithm for illumination estima-
tion  

From the analysis of skin gamut features across a range of 
illuminations the best features for estimating the illumination 
were retrieved. Thus in order to estimate illumination we 
employ a cost function that calculates, for each candidate (Ai) 
and incoming gamut pair (AI), the distance between their 
respective centres of mass (CoM) and extreme points (ExtP1, 
ExtP2), the fractional intersectional area of the two gamuts 
(IntArea), and the area of the uniquely non-overlapping gamut 
regions (UniqueA, UniqueB), as follows from Equation 2; 
 
AIi = AI ∩ Ai       (2) 

 
UniqueA = AI – AIi       (5) 
 
UniqueB = Ai – AIi       (6)  

 
∆(ExtP1) = √((P1xI - P1xi)2 + (P1yI - P1yi)2)    (7)  

 
∆(ExtP2) = √((P2xI - P2xi)2 + (P2yI - P2yi)2)    (8)  
 
∆(COM) = √((RGI - RGi)2 + (BYI - BYi)2)    (9) 

 
Original Cost Function = 1 – AIi + ∆(ExtP1) + ∆(ExtP2) + 

           ∆(COM) + UniqueA + UniqueB (10) 
 

COM Cost Function = ∆(COM)   (11) 
 

We select the memory gamut that minimises the above 
cost function. 

Table 2: The chromaticity dE between the actual and esti-
mated illuminations. 

Subject 

Test 

Original Cost 
Function 
Chroma dE 

CoM   Cost 
Function 
Chroma dE 

Subject 
1 

D40 0.000 0.000 
D50 0.000 0.031 
D60 0.000 0.088 
D80 0.000 0.049 
D100 0.022 0.000 
D120 0.035 0.013 
D140 0.085 0.000 
D150 0.000 0.000 
D200 0.061 0.000 
D250 0.000 0.032 
D65 0.028 0.028 

Subject 
4 

D40 0.000 0.074 
D50 0.000 0.043 
D60 0.074 0.000 
D80 0.000 0.049 
D100 0.000 0.027 
D120 0.000 0.013 
D140 0.000 0.016 
D150 0.000 0.049 
D200 0.000 0.000 
D250 0.000 0.022 
D65 0.043 0.086 

 
Table 2 illustrates the results of the cost function for an 

incoming image under 11 different illuminations (the original 
10 plus the additional unknown illumination, D65) using a 
distinct surface patch on the human hand from those used to 
construct the database. To determine whether the additional 
information contained in the distribution improves colour 
constancy, we compare the performance of this cost function 
with a cost function that calculates only the distance between 
the two centres of the mass of the incoming gamut and the 
candidate gamut. Over all subjects, and all illuminations, the 
error in illumination estimation is significantly increased for the 
centre-of-mass-matching algorithm compared with the gamut-
matching algorithm (Table 2 depicts results for two individual 
subjects; for subject 4, the difference in estimation error for the 
two methods is significant on its own, F(1,21) = 4.4; p < 0.05) . 

Conclusion and future work 
We have demonstrated that the surface chromaticity gamut 

of human skin possesses a typical, predictable structure in 
physiological cone-contrast space across a range of different 
skin types. Skin chromaticities form an oriented cluster, the hue 
angle (in the RG-BY chromaticity plane) of which remains 
roughly similar across skin types, but varies in a similar way 
across illuminations. The shape and spread of the gamut varies 
in a similar way across a range of daylight illuminations for all 
skin types we studied here. Using a basic cost function 
minimisation for database searching, we demonstrate that the 
area and extreme points of the chromaticity gamut in this 
chromaticity space provide additional information that aids in 
estimating the illumination, in comparison with the mean 
chromaticity of the distribution, even after adaptation to the 
neutral point.  
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In this work, we also created a hyperspectral image 
database of skin types under a variety of tunable illuminations 
which we anticipate will be useful for other applications in 
colour constancy and object recognition. In future work on the 
chromaticity gamut-matching algorithm, we will examine in 
more detail the variation in the gamut characteristics with 
respect to location of the skin surface patch,  remove the 
dependence on the pre-identification of skin type, and test the 
estimations of illumination by colour-correcting images taken 
under unknown illuminations.   
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