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Abstract 

Estimation of the noise variance of image acquisition 
systems is very important to solve the inverse problems such as 
the recovery of spectral reflectances through the use of image 
data or to get a clear image from a blurred image, etc. In the 
color imaging community, the acquisition of accurate spectral 
reflectances of objects at the resolution of pixels is important to 
reproduce realistic color images under a variety of viewing 
illuminants. The accuracy of recovered spectral reflectances is 
usually evaluated by the mean square errors (MSE) between 
the measured and the recovered reflectances. The MSE is 
dependent on the noise present in an image acquisition system, 
which is called as the system noise below, and estimating the 
noise level is important to increase the estimation accuracies. 
In the evaluation of the influence of the noise, dividing the MSE 
into two terms, i.e., the noise independent MSE (MSEfree) and 
noise dependent MSE (MSEnoise), is essential to estimate the 
noise variance and to analyze the influence of the noise on the 
MSE. A model separating the MSE into the two terms and 
estimating the noise variance was already proposed based on 
the Wiener estimation by one of the authors. Later the model 
was modified to a comprehensive model based on an arbitrary 
reflectance reconstruction matrix and was also applied to the 
noise estimates by two spectral estimation models such as the 
Wiener and the linear model. 

In the previous paper, it was not possible to apply the 
comprehensive model to the regression model or the Imai-
Berns model, which are the models to estimate spectral 
reflectances, because their reconstruction matrices are derived 
from the sensor responses which include the system noise in it. 

In this paper, a new method is proposed to extend the 
comprehensive model to four reconstruction models (Wiener, 
linear, regression and Imai-Berns models), since it is very 
interesting whether the influence of the noise on the recovery 
performance is dependent on the model used or not. By defining 
the theoretical estimates of the sensor responses and by 
estimating the reconstruction matrices without the system noise 
for the regression model and the Imai-Berns model, it is shown 
that the increasing in the MSE by the noise present in an image 
acquisition system can be evaluated by a simple formulation for 
the four models. From the experimental results it is shown that 
the comprehensive model analyzes the effect of the system noise 
on the increase in the MSE on the reflectance recovery. 

INTRODUCTION  
A single picture of a scene only tells of what it looks like 

under a given illuminant. Color appearances of a picture may 
vary under varying illuminant. Thus, the acquisition of accurate 
spectral reflectances of objects is very important to record the 
property of the object and to reproduce accurate color images 
under a variety of viewing illuminants. The accuracy of the 

recovered spectral reflectances depends on the number of 
sensors and their spectral sensitivities, the objects being 
imaged, the recording illuminants, the noise present in a device 
and a model used for the recovery. Several models have been 
proposed to evaluate a colorimetric performance of a set of 
color sensors [1]-[4], and the optimization of a set of sensors 
has been performed based on the evaluation models [5],[6]. 

Evaluating the noise present in the image acquisition 
devices and analyzing the effect of the noise are required for 
the accurate estimating colorimetric or spectral information of 
the objects being viewed. Reference [7] proposed a model to 
estimate the noise variance of an image acquisition system and 
applied it to the proposed colorimetric evaluation model and a 
spectral evaluation model, and confirmed that the evaluation 
model agrees quite well with the experimental results by 
multispectral cameras [8]-[12]. The evaluation model was 
based on the least squares filtering (or Wiener) model and later 
we modified it to the comprehensive model [13] to make it 
possible to evaluate the noise estimated by a variety of spectral 
reflectance estimation models. In the previous paper [13], the 
comprehensive model was applied to the Wiener and the linear 
model but it didn’t fit for the regression nor the Imai-Berns 
model due to the noise included in the reconstruction matrices. 
Thus, we extended the comprehensive model and applied it to 
the regression and the Imai-Berns model to estimate the noise 
variance in our latest proposal [14]. 

In this paper, the previously proposed model is refined and 
is applied to the four recovery models, such as the Wiener, the 
linear, the regression and the Imai-Berns model. With these 
four recovery models, the effect of the system noise variance to 
the image acquisition was analyzed. It was confirmed by 
experiments that the increase in the MSE with the estimated 
noise variance agrees quite well with the proposed model. 

MODELS  
In this section, the previous models used for the 

experiments are briefly reviewed. 

Previous model to separate the MSE based on 
the Wiener estimation 

A vector space notation for a color reproduction is useful 
in the problems. In this approach, the visible wavelengths from 
400 to 700 nm are sampled at constant intervals and the number 
of the samples is denoted as N. A sensor response vector from a 
set of color sensors for an object with an 1N ×  spectral 
reflectance vector   can be expressed by 

erp += SL , (1) 

where p  is an 1M ×  sensor response vector from the M  
channel sensors, S  is an NM ×  matrix of the spectral 
sensitivities of sensors in which a row vector represents a 
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spectral sensitivity, L  is an NN ×  diagonal matrix with 
samples of the spectral power distribution of an illuminant 
along the diagonal, and e  is an 1M ×  additive noise vector. In 
this work, the noise e  is defined to include all the sensor 
response errors resulting not only from a CCD itself but also 
from the measurement in the spectral characteristics of 
sensitivities, an illumination and reflectances, and quantization 
and it is termed as the system noise [7] below. The system 
noise is assumed to be signal independent, zero mean and 
uncorrelated to itself. For abbreviation, let SLSL = . The MSE 
of the recovered spectral reflectances r̂  is given by 

{ }2ˆEMSE rr −= , (2) 

where { }•E  represents the expectation. If r̂  is given by 
( )pr 2

eWWˆ σ= , the Wiener estimation matrix which minimizes 
the MSE is given by 

( ) ( ) 12
e

T
LSSL

T
LSS

2
eW ISRSSRW −

σ+=σ , (3) 

where T represents the transpose of a matrix, SSR  is an 
autocorrelation matrix of the spectral reflectances of samples 
that will be captured by a device, and 2

eσ  is the noise variance 
used for the estimation. Substitution of Eq.(3) into Eq.(2) and 
letting 22

e σ=σ  leads to [7] 
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where, iλ  is the eigenvalues of SSR , ijb , v
iκ  and β  represent 

i-th row of the j-th right singular vector, singular value and a 
rank of a matrix 2/1

LVS Λ , respectively, 2σ  is the actual system 
noise variance, V  is a basis matrix and Λ  is an NN ×  
diagonal matrix with positive eigenvalues iλ  along the 
diagonal in decreasing order. The first and second terms of the 
Eq.(4) represent the MSE of the noiseless case (MSEfree) and 
the third term represents the increase in the MSE by the noise 
(MSEnoise). The MSE of the reflectance recovered by the 
Wiener matrix ( )0WW  in the experiment ( 0MSE ,i.e.,  

( ){ }2
W0 0WEMSE pr −= ) gives the estimated system noise 

variance 2σ̂  by [7] 
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Multiple regression analysis 
Let ip  be an 1M ×  sensor response vector that is obtained 

by the image acquisition of a known spectral reflectance ir  of 
the i-th object. Let P  be an  kM ×  matrix that contains the 
sensor responses k21 ,,, ppp L , and let R be an kN×  matrix 
that contains the corresponding spectral reflectances 

k21 ,,, rrr L , where k is the number of the learning samples. The 
pseudoinverse model is to find a matrix RW  which minimizes 

PWR R− , where notation •  represents the Frobenius norm 
[15]. The matrix RW  is given by. 

+= RPWR , (6) 

where +P  represents the pseudo inverse matrix of the matrix 
P . By applying a matrix RW  to a sensor response vector p , 
i.e., pr RWˆ = , a spectral reflectance is estimated [16]. 

Linear model 
Assuming the spectral reflectances k21 ,,, rrr L  are smooth 

over the visible wavelengths, the spectral reflectance r  can be 
written by 

φr V=  (7) 

with the basis matrix V  and the column vector of the weights 
φ . By letting the system noise e  in Eq.(1) equals 0, the sensor 
response can be written as 

rp LS= . (8) 

Thus the reconstruction matrix LW , which gives pr LWˆ =  
for the linear model is given by 

( )+= VSVW LL . (9) 

Imai-Berns model 
Let Σ  be a kd×  matrix that contains the column vectors 

of the weights k21 ,,, φφφ L  to represent the k  known spectral 
reflectances k21 ,,, rrr L  and let P  be an kM ×  matrix that 
contains corresponding sensor response vectors k21 ,,, ppp L  of 
those reflectances, where d  is a number of the weights to 
represent the spectral reflectances. The multiple regression 
analysis between these matrices is expressed as BP−Σ . A 
matrix B  that minimizes the Frobenius norm is given by 

+Σ= PB . (10) 
Since a weight column vector φ  for a sensor response 

vector p  is estimated by pφ Bˆ = , the estimated spectral 
reflectance vector is derived from φVr ˆˆ = , where a matrix V  
is the basis matrix that contains first d orthonormal basis 
vectors of spectral reflectances. Thus the reconstruction matrix 

IW , that gives pr IWˆ =  for the Imai-Berns model [17] is given 
by  

VBWI = . (11) 

PROPOSED MODEL 
Let W be a reconstruction matrix, then ( )err += LSWˆ  and 

the MSE of the reconstruction by the matrix W is given by 

( ) ( ) ( ){ }[ ]TˆˆETrWMSE rrrr −⋅−=  (12) 

( )( ) ( )( ){ }[ ]TTT
LN

T
LN WWSIWWSIETr erer −−⋅−−=  (13) 

where NI  is an NN ×  identity matrix. We assume that the 
reflectance r  and the error e  has no correlation, thus 
{ } 0E T =re  and { } 0E T =er , and let ( ) M

2T IE σ=ee  where MI  is 
an MM×  identity matrix, then the ( )WMSE  is given as 

( ) ( ) { }( ){ } ( )T2T
LN

T
LN WWTrWSIEWSITrWMSE σ+−−= rr .

 (14) 
We denote the first term of the Eq.(14) as MSEfree(W) 

(the noise independent MSE by the matrix W) and the second 
term as MSEnoise(W) (the noise dependent MSE by the matrix 
W). Thus, 

( ) ( ) { }( ){ }T
LN

T
LNfree WSIEWSITrWMSE −−= rr , (15) 

( ) ( )T2
noise WWTrWMSE σ= . (16) 

Also the MSEnoise(W) can be denoted as 

( ) ∑ = κσ= R
1i

2
i

2
noise WMSE , (17) 
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Fig. 1. (a)Spectral sensitivities of the camera in arbitrary unit. 

where the SVD of the matrix W as ∑= κ= R
1i

t
iiiW uw  is used. 

iκ , iw  and iu  are the i-th singular value, the i-th left and right 
singular vector of the matrix W, respectively.  

Thus the estimated system noise variance 2
Wσ̂  with a 

reconstruction matrix W is given by 

( ) ( )( ) ∑ = κ−=σ R
1i

2
ifree

2
W WMSEWMSEˆ . (18) 

In the previous paper [13], only the Wiener estimation 
matrix ( )0WW  (by letting 02

e =σ  in Eq.(3)) and the matrix LW  
in the linear model were used as the matrix W since the matrix 
W should not contain the system noise to make the 
MSEfree(W) free from the noise. The reconstruction matrix of 
the regression and the Imai-Berns model contain the noise 
because they include the sensor response vector erp += SL , 
thus it is impossible to apply them to the proposed model. In 
order to exclude the noise from the reconstruction matrix W, 
the matrix W should be calculated only from LS  and r . Now, 
by defining the noiseless sensor response as rp SLˆ = , it is 
possible to apply the reconstruction matrix derived from the 
noiseless sensor responses to the proposed model. Thus, the two 
reconstruction matrices W of the regression ( RW ) and the 
Imai-Berns model ( IW ) can be used to calculate the 
MSEfree(W) and can be defined as a function of the noiseless 
sensor response p̂  respectively using Eqs. (6) and (11), as 

( ) +≡ P̂RˆWR p , (19) 

( ) +Σ≡ P̂VˆWI p . (20) 

EXPERIMENTAL PROCEDURES 
A multispectral color image acquisition system was 

assembled by using seven interference filters (Asahi Spectral 
Corporation) in conjunction with a monochrome video camera 
(Kodak KAI-4021M). Image data from the video camera were 
converted to 8-bit-depth digital data by an AD converter. The 
spectral sensitivity of the video camera was measured over 
wavelength from 400 to 700 nm at 10-nm intervals. The 
measured spectral sensitivities of the camera with each filter are 
shown in Fig.1(a).  

 

 
Fig. 1. (b)Spectral power distribution of the recording illumination. 

The illuminant used for image capture was the illuminant 
which simulates daylight (Seric Solax XC-100AF). The spectral 
power distribution of the illuminant measured by the 
spectroradiometer (Minolta CS-1000) is presented in Fig.1(b).  

The GretagMacbeth ColorChecker (24 colors) was 
illuminated from the direction of about 45 degree to the surface 
normal, and the images were captured by the camera from the 
normal direction. The image data were corrected to uniform the 
nonuniformity in illumination and sensitivities of the pixels of a 
CCD. The GretagMacbeth ColorChecker was used as both the 
learning and the test sample. Further detailed experimental 
procedures are described in the previous paper [7]. 

RESULTS AND DISCUSSIONS 

ΔMSE and MSEnoise(W) for each model 
To analyze the influence of the system noise on the 

recovered spectral reflectances, a measure for the increase in 
the MSE by the system noise is required to compare the 
theoretical prediction with the MSEnoise(W). As described 
above, the matrix W in the MSEfree(W) should not include the 
system noise, thus we define the reconstruction matrix free 
from the system noise as 0W , which is ( )0WW  for the Wiener 
model, LW  for the linear model, ( )p̂WR  for the regression 
model, and ( )p̂WI  for the Imai-Berns model. By using the 
matrix 0W , we define the MSEΔ (the increase in the MSE by 
the system noise for each reconstruction matrix W), which is 
obtained by the experiment, as 

( ) ( )0free WMSEWMSEMSE −=Δ . (21) 

Fig.2 shows the MSEΔ  as a function of MSEnoise(W) for 
various combinations of sensors from three to seven. The 
MSEfree( 0W ) and the MSEnoise(W) were obtained by the 
proposed model and the MSE(W) was obtained by the 
experiment with the reconstruction matrices W= ( )2

W ˆW σ  as 
Eq.(3), LW  as Eq.(9), RW  as Eq.(6) or IW  as Eq.(11) for each 
reconstruction model. Though some plots by the Wiener model 
deviate from the theoretical predictions, the MSEΔ  and the 
MSEnoise(W) agrees well with the prediction of the proposed 
model. 
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Fig. 2. The relation between the increase in the MSE by the system noise  
( MSEΔ  ) and MSEnoise(W) by the Wiener, regression, Imai-Berns and 
linear model for the GretagMacbeth ColorChecker. The combinations of 
the sensors are shown to the left of the deviating plots. 

Discussion about deviating plots 
In Fig.2, some of the plots deviate from the prediction, 

especially some plots by the Wiener model deviate largely. The 
deviation is mainly caused by the approximation of the sensor 
response as rp SLˆ =  by neglecting the system noise in the 
image acquisition system. As seen from Eqs.(14), (15) and (16), 
the MSE of the reconstruction by the matrix W is given by 

( ) ( ) ( )WMSEWMSEWMSE noisefree += . (22) 

Thus, the theoretical MSEnoise(W) equals to MSE(W)-
MSEfree(W). But as mentioned above, the matrix W of the 
MSEfree(W) should not contain the system noise to make the 
MSEfree(W) free from the noise. Otherwise, the MSEfree(W) 
increases with the increase in the system noise. Table 1 shows 
the MSEfree by the previous model, the MSEfree(W

0
) and the 

MSEfree(W) by the proposed model when W
0
= ( )0WW  and 

W= ( )2
W ˆW σ  for six and seven sensor sets and the deviating 

sensor sets in Fig.2. It was mathematically proved in the 
previous paper [13] that the proposed model is equivalent to the 
previous model when the reconstruction matrix W= ( )0WW for 
the Wiener estimation. Thus, the MSEfree(W

0
) equals to the 

MSEfree while the MSEfree(W) is slightly larger than the 
MSEfree(W

0
). To calculate the increase in the MSE by the 

system noise, the proposed model uses MSEfree(W
0
) instead of 

the MSEfree(W). Thus, the difference between MSEfree(W
0
) 

and the MSEfree(W) is one of the cause of the deviation. The 
difference between MSEfree(W

0
) and MSEfree(W) for the 

deviating sensor sets is larger than the rest of the sensor sets.  
On the other hand, we estimate the MSEnoise(W) by the 

multiple of the ( )TWWTr  and the system noise variance 2
Wσ̂  

estimated with the reconstruction matrix W
0
. Fig.3 shows the 

relation between MSE(W)-MSEfree(W) and the estimate of the 
MSEnoise(W) for the Wiener model.  

 
Fig. 3. The relation between MSE(W)-MSEfree(W) and the estimate of the 
MSEnoise(W) for the Wiener model. The estimate of the MSEnoise(W) is 
the same as the MSEnoise(W) in Fig.2. 

Table 1.The MSEfree by the previous model and the 
MSEfree(W0) and MSEfree(W) by the proposed model for the 
six and seven sensor sets and the deviating sensor sets. 
The Wiener reconstruction matrices are W0=WW(0) and 
W=WW( 2σ̂ ), respectively. 

 

Sensor 
Set 

Previous 
model 

Proposed model 
(Wiener model) 

MSEfree MSEfree(W0) MSEfree(W) 
1234567 1.03E-02 1.03E-02 1.06E-02 
123456 3.61E-02 3.61E-02 3.70E-02 
123457 1.42E-02 1.43E-02 1.45E-02 
123467 1.26E-02 1.26E-02 1.28E-02 
123567 1.24E-02 1.24E-02 1.27E-02 
124567 1.27E-02 1.27E-02 1.30E-02 
134567 1.23E-02 1.23E-02 1.25E-02 
234567 1.41E-02 1.41E-02 1.43E-02 

123 8.25E-01 8.25E-01 8.42E-01 
124 5.70E-01 5.70E-01 5.81E-01 
125 4.13E-01 4.13E-01 4.21E-01 
1234 5.51E-01 5.51E-01 5.61E-01 
1235 3.94E-01 3.94E-01 4.01E-01 

 
If this estimate of the MSEnoise(W) is precise, then the 

MSE(W)-MSEfree(W) and the estimate of the MSEnoise(W) 
should deviate downwards by the increase in the MSEfree(W), 
i.e. the MSEfree(W) is larger than the MSEfree(W

0
) due to the 

increase by the system noise. Though, the plots deviate less 
than those in Fig.2, the plots still deviate and some are 
deviating upwards. This means that the further analysis for the 
estimation of the MSEnoise(W) is required. 

For the analysis of the Wiener model, the previous model 
derived from the Wiener estimation gives the better correlation 
between the MSE-MSEfree and the MSEnoise. The relation 
between the MSE-MSEfree and the MSEnoise is shown in 
Fig.4. 
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Table 2.The estimated system noise variance for seven and six sensors.  
 

Sensor 
Set Optimum Previous 

model 

Proposed model 

Wiener Linear Regression Imai-
Berns 

1234567 1.15E-04     8.39E-05     8.39E-05     1.42E-04    8.39E-05     8.19E-05    
123456 1.45E-04 1.32E-04 1.32E-04 6.54E-05 1.32E-04 1.38E-04 
123457 1.14E-04 1.05E-04 1.05E-04 7.06E-05 1.05E-04 1.11E-04 
123467 1.79E-04 1.22E-04 1.22E-04 6.78E-05 1.22E-04 1.38E-04 
123567 1.60E-04 1.17E-04 1.17E-04 6.99E-05 1.17E-04 1.37E-04 
124567 1.31E-04 1.17E-04 1.17E-04 1.26E-04 1.17E-04 1.31E-04 
134567 2.09E-04 1.20E-04 1.20E-04 2.10E-04 1.20E-04 1.27E-04 
234567 1.63E-04 9.21E-05 9.21E-05 1.83E-04 9.21E-05 9.80E-05 

Table 3.The MSE of the recovered spectral reflectances by the Wiener estimation (Eq.(3)) with each estimated noise variance in 
Table 2 for six and seven sensors. (MSEs larger than the optimum are shown in bold.) 

 

Sensor 
Set Optimum Previous 

model 

Proposed model 

Wiener Linear Regression Imai-
Berns 

1234567 1.33E-02 1.33E-02 1.33E-02 1.33E-02 1.33E-02 1.33E-02 
123456 4.41E-02 4.41E-02 4.41E-02 4.44E-02 4.41E-02 4.41E-02 
123457 1.78E-02 1.78E-02 1.78E-02 1.79E-02 1.78E-02 1.78E-02 
123467 1.63E-02 1.63E-02 1.63E-02 1.64E-02 1.63E-02 1.63E-02 
123567 1.60E-02 1.60E-02 1.60E-02 1.61E-02 1.60E-02 1.60E-02 
124567 1.67E-02 1.67E-02 1.67E-02 1.67E-02 1.67E-02 1.67E-02 
134567 1.58E-02 1.59E-02 1.59E-02 1.58E-02 1.59E-02 1.59E-02 
234567 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 

 

 
Fig. 4. The relation between the MSE(W)-MSEfree and the MSEnoise by 
the previous model. 

The estimated system noise variance and the 
MSE by the Wiener model 

Table.2 shows the optimum noise variances that make the 
MSE minimum using the Wiener estimation by Eq.(3), which 
are searched by the brute force method, and the estimated 
system noise variances by the proposed model with each 

reconstruction matrix 0W  are shown. The previous model and 
the regression model ( RW ) gives the same estimate of the 
system noise variance as the Wiener model. The noise variance 
estimated by each model is almost the same except for the 
linear model.  

It is very easy to evaluate whether the noise variances are 
correctly estimated by the proposal or not, since the MSE of the 
spectral reflectances recovered by the Wiener estimation is 
minimized when the noise variance 2

eσ  equals to the actual 
system noise variance in Eq.(3) [7]. In the experiments, it is 
important to remember that the actual system noise variance is 
unknown and we only know that the estimated noise variance 
gives the minimum MSE in the Wiener estimation in a given 
precision. Thus, a broad range of the estimates minimize the 
MSE in the Wiener estimation. 

The noise variance estimated by various reconstruction 
matrices are substituted into Eq.(3) and the MSEs by Eq.(3) 
with each estimated noise variance are shown in Table.3. The 
MSEs except for the linear model are almost the same as those 
of the optimum which correspond to the MSE at actual noise 
variance. Only the MSEs by the linear model scatter a little, 
since the linear model is not regularized. 

CONCLUSIONS 
For the Wiener, linear, regression and the Imai-Berns 

model, the comprehensive evaluation model was refined to 
analyze the increase in the MSE on the reflectance recovery by 
the system noise. The experimental results by multispectral 
cameras agree quite well with the proposed model. From this 
result, it is concluded that the proposed model is appropriately 
formulated and that the separation of the MSE into MSEfree 

CGIV 2012 Final Program and Proceedings 251



 

 

and the MSEnoise is essential for estimating the noise variance 
and for evaluating the influence of the system noise on the 
image acquisition system. From the experimental results the 
noise variance is correctly estimated by the proposal. 
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