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Abstract
In this paper, we propose a continuous no-reference video

quality evaluation model for MPEG-2 MP@ML coded stereo-
scopic video based on spatial, temporal, and disparity features
with the incorporation of human visual system characteristics.
We believe edge distortion is a major concern to perceive spatial
distortion throughout any image frame which is strongly depen-
dent on smooth and non-smooth areas of the frame. We also
claim that perceived depth of any image/ video is mainly depen-
dent on central objects/ structures of the image/ video contents.
Thus, visibility of depth is firmly dependent on the objects’ dis-
tance such as near, far, and very far. Subsequently, temporal
perception is mostly based on jerkiness of video and it is depen-
dent on motion as well as scene content of the video. There-
fore, segmented local features such as smooth and non-smooth
area based edge distortion, and the objects’ distance based depth
measures are evaluated in this method. Subsequently, video jerki-
ness is estimated based on segmented temporal information. Dif-
ferent weighting factors are then applied for the different edge
distortion and depth features to measure the overall features
of a temporal segment. All features are calculated separately
for each temporal segment in this method. Subjective stereo
video database, which considered both symmetric and asymmet-
ric coded videos, is used to verify the performance of the model.
The result indicates that our proposed model has sufficient pre-
diction performance.

Introduction
There is no doubt that all conventional 2D media are

going to be replaced by immersive 3D media in near future to
improve the quality of experience for all media applications
from broadcasting [1] to more specialized applications such as
robotic navigation [2], and medical treatments [3]. There are
many alternative technologies for 3D video display and com-
munication including holographic, volumetric and stereoscopic;
stereoscopic video seems to be the most developed technology
at the present [4]. Stereoscopic video consists of two videos (left
and right views) captured by closely located (approximately the
distance between two eyes) two video cameras. These views
constitute a stereo pair and can be perceived as a virtual view
(i.e., not an actual camera view) in 3D by human observers
with the rendering of corresponding view points. Therefore,
the codec used in 2D video material can still be applied
independently on the left and right views of a stereo video pair
to save valuable bandwidth and storage capacity, though MPEG
Ad-Hoc group for 3D audio and video is working on a new
standard for efficient multi-view video coding [5]. Although the
technologies required for 3D video are emerging rapidly, the
effect of these technologies as well as video compression on
the perceptual quality of 3D viewing has not been thoroughly
studied. Therefore, perceived quality of 3D video is always an

important issue to evaluate the performance of all 3D imaging
applications and subjective quality assessment is the most
accurate method for it. However, it is time consuming and
expensive. In addition, this kind of assessment is not suitable
for real time monitoring applications. Therefore, objective eval-
uation is an ever increasing requirement to monitor perceptual
video quality in real time. Consequently, no-reference (NR)
quality evaluation is more important to monitor video qual-
ity at end user terminals where reference videos are not available.

Although, nowadays 3D media quality evaluation is getting
more attention in video quality expert group (VQEG) commu-
nity, a very few efforts has concentrated till now to develop
3D quality metric specifically for video. Most of these works
start with 2D metrics and try to incorporate information about
3D. In [6], a compound full-reference (FR) stereo-video quality
metric is proposed composed of two elements; stereoscopic
quality, and monoscopic quality. Monoscopic quality evaluates
perceived distortions caused by blur, noise, contrast change etc.,
and the measure is a comparison between initial stereo-frames
assumed to have perfect quality, and stereo-frames resulting
from some distorting processing. Stereoscopic quality assesses
the perceived degradation of binocular depth cues only, and
it measures the amount of binocular cues preserved between
image pairs. The features of each frame are averaged to get
the prediction value for a sequence. In [7], the selection of
the rate allocation strategy between views is addressed for
scalable multi-view video codec to obtain the best rate-distortion
performance by using objective stereo video quality measure.
The work is inspired by the hypothesis that humans perceive
good quality stereoscopic / 3D video as long as one of the eyes
sees a high quality view. It seems as 2D video quality prediction
because they do not take into account any depth information to
the metric which is one of the most important factors for 3D
perception. In [8], a FR stereoscopic video quality assessment
method is proposed based on a well known 2D video quality
model, VQM. The evaluation considers color video and depth
information (H.264 codec). The method uses both the objective
color video quality measured using VQM, and the objective
quality of the average of the rendered left (color image) and right
(depth image) views measured using VQM. A similar analysis is
performed on color plus depth map-based stereo video sequences
using VQM metric in [9]. The applicability of conventional
2D video metrics such as PSNR, SSIM, and VQM to 3D video
with different packet loss conditions is investigated on a small
dataset both for the case of stereoscopic video and monoscopic
video with depth information [10]. A depth map based 3D video
quality metric is proposed in [11] for perceptual depth and visual
fatigue. In order to estimate depth map, the algorithm considers
three features, namely depth range, vertical misalignment, and
temporal consistency. To obtain the depth map that consider
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the three features, feature based disparity vectors is estimated
by using Scale invariant feature transform. The method is then
integrated into a single value which indicates visual fatigue. In
[12] the authors investigate the variation of the subjective quality
of depth perception with the quantization level of the depth
maps. In particular the paper focused on the color plus depth
representation of 3D video. The Just Noticeable Difference in
Depth values at various depth levels is experimentally derived.
In [13], a continuous NR objective quality assessment model
is proposed for MPEG-2 MP@ML coded stereoscopic videos
based on spatio-temporal segmentation that use the perceptual
differences of local features such as edge and non-edge. Spatial
distortions and disparity measures of a stereoscopic pair frame
are calculated based on aforementioned features. In [14],
[15], two FR stereoscopic quality metrics are proposed based
on 3D-DCT with take into account HVS properties, such as
contrast sensitivity function (CSF) and luminance masking [16],
[17]. In the metrics, 3D-DCT is used to analyse the perceptual
similarity of blocks in stereo frames grouped using disparity
correspondence and block-matching. The methods are inspired
by the properties of binocular vision such as binocular fusion
and binocular difference. Properties of the binocular vision
suggest that the visual information is simultaneously processed
in two different ways. In [18], a perceptual model for stereo
video quality evaluation is proposed, which mainly consists of
three steps: wavelet-based perceptual decomposition, contrast
conversion and masking, pooling and quality mapping. The
work tries to incorporate some human visual system properties
such as the Contrast Sensitivity Function, Multi-channel and
Masking to the algorithm. In [19], a NR metric is proposed
to predict quality of experience for 3D videos/ images. The
algorithm mainly tries to assess visual comfort associated with
viewing stereo images and videos. The algorithmic measure is to
extract statistical features from disparity and disparity gradient
maps as well as indicators of spatial activity from images.
In [20], [21], authors propose respectively both FR and NR
objective video quality measure for DIBR-based stereoscopic
3D videos. The 3VQM metrics attempt to evaluate the elements
of visual discomfort which is calculated by the approach of
ideal depth estimation. The metrics have also been used to
derive the ideal depth estimate in a no-reference scenario. The
ideal depth estimate is then evaluated by the three distortion
measures: Temporal error outliers, Spatial error outliers and
Temporal inconsistency. The three indexes are combined to form
the proposed video quality measures which are verified against
subjective rating.

Human Visual System (HVS) modelling is very important
to evaluate perceptual media quality objectively whatever the
media in 2D or 3D. There are two types of HVS models: neu-
robiological model [22] and psychophysical vision model. Mod-
els based on neurobiology aim to estimate the actual low-level
process in the eye and optical nerve. However, these are not
suitable in real-world application, because of their complexity
[23]. The psychophysical models are used to predict aspects of
the human vision, which are relevant to picture quality, such as
color perception, contrast sensitivity, temporal and pattern mask-
ing etc. In this work, we propose a features based no-reference
stereo video quality assessment model both for symmetric and
asymmetric coded video which is inspired by different aspects
of HVS characteristics. The model consists of three features:
spatial, temporal, and disparity. The metric uses perceptual dif-
ference of smooth and non-smooth areas to measure edge distor-

tion as spatial feature, and consider importance of central objects/
structure and its distance to measure perceive depth as disparity
feature. Finally, video jerkiness is estimated as temporal features
with the incorporation of video motion and scene contents. Here,
we limit our study to MPEG-2 MP@ML codec video with differ-
ent bit rates. The subjective experiment results on stereo videos
dataset are used to train and test the model. 3D video quality as-
sessment is required to incorporate multidimensional perceptual
factors: depth, 3D video impairments (i.e., mainly crosstalk), and
visual comfort etc., the combine effect of these factors reflects
overall 3D perceptual quality. The rest of the paper is organized
as follows: A section describes details of our proposed model.
Results with the subjective experiments are discussed in the next
section and finally, the paper is concluded in the last section.

Figure 1. Proposed NR quality evaluation model.

Proposed No-Reference Model
In this section, we provide a brief discussion about our pro-

posed features based objective model. The computational model
consists of three feature measures:

• Spatial feature: Edge distortion measure
• Disparity feature: Depth measure
• Temporal feature: Jerkiness measure

All features are calculated with the incorporation of differ-
ent aspects of human visual system (HVS) characteristics. Sub-
sequently, each feature is distinctly calculated for each temporal
segment of length fifteen successive frames. Thus, we get two
sets of mathematical features per second. Because, all reference
video clips are in 30 fps as well as subjective sample was taken
2/sec. The block diagram of the proposed model is shown in
Figure 1.

Spatial Feature: Edge Distortion Measure
Human visual system (HVS) is very sensitive to edge/ struc-

tural information in viewing field. Therefore, Human eye can
easily perceive any degradation of edge information which re-
flects perceptual quality in spatial domain. Consequently, per-
ceived distortions in spatial domain should be strongly dependent
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on smooth and non-smooth areas of the viewing field. For exam-
ple, in theory, the visual distortions of an image increase with
an increased rate of compression. However, the relationship be-
tween the distortions and the level of compressions is not always
straight forward. It strongly depends on the texture contents of an
image as well. Therefore, smooth and non-smooth areas based
edge distortion measure is used for spatial feature estimation.
Here, zero-crossing technique is employed for edge detection. In
this section, we estimate edge distortion in spatial domain by us-
ing zero-crossing edge detector. The both views of stereo video
sequence are converted into frame and consider selected frames
only with luminance component to reduce computational cost.
The frames were selected at regular intervals of time with two
frames skipping. For example, the consecutive selected frames
are 1, 4, 7,.... Firstly, we apply the block (8×8) based segmen-
tation algorithm to the left and right frames individually to clas-
sify smooth, and non-smooth blocks in the frames [27]. Sec-
ondly, we calculate zero-crossing of each 8×8 block of the stereo
frame pair separately for left and right frames. Thirdly, we aver-
age each value of zero-crossing independently for smooth, and
non-smooth blocks of each frame of the stereo pair. And fi-
nally, total zero crossing for each stereo frame pair is estimated
based on minimum zero-crossing value between the left and right
frames distinctly for smooth, and non-smooth blocks. Here min-
imum zero-crossing is considered to take into account highest
edge degradation between the two views. The measure of zero-
crossing within each block of the frames are calculated horizon-
tally and then vertically.
For zero-crossing in horizontal direction: Let the test frame sig-
nal is x(m, n) for m ∈ [1, M] and n ∈ [1, N], a differencing signal
along each horizontal line is calculated by

dh(m,n) = x(m,n+1)−x(m,n), (1)

n ∈ [1, N-1] and m ∈ [1, M]
Here, zero-crossing is calculated by second order derivative with
sign identification and multiplication

dh−sign(m,n) =

⎧

⎨

⎩

1 if dh(m,n) > 0
−1 if dh(m,n) < 0
0 otherwise

(2)

dh−mul(m,n)

=dh−sign(m,n)×dh−sign(m,n+1) (3)

We define for n ∈ [1, N-2]:

zh(m,n) =

{

1 if dh−mul(m,n) < 0
0 otherwise

(4)

where “1” and “0” are respectively indicated zero-crossing
occurring and not, and also the size of zh(m,n) is M× (N− 2).
The horizontal zero-crossing of a block (8× 8), ZCbh, is esti-
mated as follows:

ZCbh =
8

∑
i=1

8

∑
j=1

zh(i, j) (5)

Thus, we can calculate zero-crossing of each available block
of the left and right frames.
Similarly, the vertical feature of zero-crossing (ZCbv) of the block
is calculated. Therefore, the overall zero-crossing feature, ZCb,
per block is given by:

ZCb =
ZCbh +ZCbv

2
(6)

Consequently, the average zero-crossing values for smooth,
and non-smooth areas of the left frame are calculated by:

ZClp =
1

Np

Np

∑
b=1

ZCbp (7)

ZCln =
1

Nn

Nn

∑
b=1

ZCbn (8)

where Np, and Nn are respectively the number of smooth,
and non-smooth blocks of the frame. Similarly, the average
zero-crossing values of ZCrp, and ZCrn for the right frame are
calculated. In this text, the subscripts ‘p’, and ‘n’ are indicated
smooth and non-smooth areas respectively.

We then calculate the total zero-crossing features of smooth,
and non-smooth areas of the stereo frame. For the total zero-
crossing features (ZCp, and ZCn), we estimate minimum values
between the left and right frames by the following algorithm:

ZCp (ZClp,ZCrp) = min(ZClp,ZCrp) (9)

ZCn (ZCln,ZCrn) = min(ZCln,ZCrn) (10)

Let, ZCp( f ) be the total zero-crossing for smooth areas of a
stereo frame pair, f. Then we calculate the feature for each tem-
poral segment by the following equation:

ZCp(s) =
1
F

F

∑
f=1

ZCp( f ) (11)

where ZCp(s) represents zero-crossing for a temporal segment,
s for smooth areas. And “F” denotes number of frames in a tem-
poral segment, s. Here, the value of F = 5. Subsequently, we
determine the zero-crossing (ZCp(s)) of the temporal segment
for smooth areas by using available past four temporal segment
values. Here, zero-crossing value of every temporal segment is
estimated by Minkowski normalization with the consideration of
the values of past four temporal segment and the current tempo-
ral segment to take into account of human recency effect. The
equation is given by:

Zp(s) =
(1

5

5

∑
i=1

ZCp(s− i)γ
)

1
γ

(12)

where s = 1,2,3,...... represent successive temporal segment in
temporal domain. The value of ZC is in the range [0,64]. Sim-
ilarly, the zero-crossing feature, Zn(s), for non-smooth areas is
computed. Here, the value of γ is considered as 0.5. Lastly, the
overall zero-crossing, Zs, for each temporal segment is calculated
by

Z(s) = Zp(s)
w1 ·Zn(s)

w2 (13)

where w1, and w2 are the weighting factors for the zero-crossing
of smooth, and non-smooth areas.

Disparity Feature: Depth Measure
We claim that human eye is mostly influenced by central

objects/ structural information of the image/ video contents for
depth perception. Accordingly, visibility of the depth is highly
dependent on the objects distances such as near, far, and very far.
Pixel displacement between the left and right views is called dis-
parity. A pixel’s disparity is inversely to its depth in the stereo
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Figure 2. Normalized histogram of higher, middle, and lower disparity of the three different frames with depth maps.

Figure 3. Normalized histogram of higher disparity for Chip-5 (Amusement park).

view. Therefore, pixels displacement are calculated by a segment
based stereo matching algorithm [26] and evaluate disparity his-
togram. Subsequently, we estimate three normalized histogram
values from lower, middle, and upper part of the histogram in or-
der to take into account the objects relative distances. In order to
verify the evidence, we analyse a stereo video clip of Amusement
park (Clip-5), see Figure 5. In the video clip, a rotation merry-
go-round from a steady camera perspective can be seen and depth
of the central objects is changing with the rotation. To explain it
more clearly, we consider three frames of the clip where cen-
tral object is relatively very far, far, and near in frames 1st, 2nd,
and 3rd respectively (see Figure 2). The figure also shows nor-
malized higher, middle, and lower disparity values for the three
frames. The bar graph in Figure 2 for normalized higher dispar-
ity indicates that 1st frame’s disparity is lower compared to 2nd
frame and also 2nd frame is lower than 3rd frame. Consequently,
the analysis confirms that the object depth perception is higher
in 3rd frame and eventually in 2nd, and 1st frame. Similarly, the
normalized higher disparity histogram for all frames of the clip
is shown in Figure 3. The bars in the figure follows a chang-

ing nature that also confirms the variation of depth perception of
the clip. Thus, higher, middle, and lower normalized disparity
measures are used in this model as disparity feature. Although,
higher disparity feature is mainly approved the depth perception
we also want to consider middle, and lower disparity features to
take into consideration of relative depth of other objects of the
scene.

Disparity histogram based depth measure is presented
in this section. In order to measure disparity feature, we use
a segment based stereo matching algorithm. The approach
is conducted by using belief propagation and a self adapting
dissimilarity measure. Details of the algorithm are discussed
in [26]. Firstly, the stereo matching algorithm is applied to
the consecutive selective frame pairs in a stereo sequence.
Eventually, we get each pixel’s disparity of the frame pairs. Sec-
ondly, we calculate histogram of the disparity frames. Thirdly,
upper, middle, and lower parts of the histogram are considered
and then normalized these values. Subsequently, these three
normalized disparity features are considered to measure depth
in our method. The depth maps of three sample stereo frame
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pairs are shown in Figure 2. Colors in the depth maps that are
indicated by vertical color bars in right are estimated depths of
the frames pairs.
We consider

• Lower disparity: h(0), h(1), and h(2)
where h(0), h(1), and h(2) indicate number of disparity
pixels with pixel’s displacement 0, 1, and 2 receptively.

• Middle disparity: h( d
2 −1), h( d

2 ), and h( d
2 +1)

• Higher disparity: h(d-2), h(d-1), and h(d)
where d is the maximum pixel disparity/ displacement.

For normalized disparity:

NDl( f ) =
h(0) · (0+1)+h(1) · (1+1)+h(2) · (2+1)

M×N× (d +1)
(14)

NDm( f ) =
h( d

2 −1) · (( d
2 −1)+1)+h( d

2 ) · (( d
2 )+1)

M×N× (d+1)

+
h( d

2 +1) · (( d
2 +1)+1)

M×N× (d +1)
(15)

NDh( f ) =
h(d−2) · ((d−2)+1)+h(d−1) · ((d−1)+1)

M×N× (d +1)

+
h(d) · (d +1)

M×N× (d+1)
(16)

where NDl(f), NDm(f), and NDh(f) are respectively lower, mid-
dle, and higher disparity features of a stereo frame pair. Subse-
quently, the lower disparity feature, NDl(s) for a temporal seg-
ment, s is calculated by:

NDl(s) =
1
F

F

∑
f=1

NDl( f ) (17)

Similarly, NDm(s), and NDh(s) are estimated. Finally, the to-
tal disparity features of a temporal segment are calculated us-
ing Minkowski normalization with considering the past four dis-
parity samples by the Equation 12. Let, NDL(s), NDM(s), and
NDH(s) be the total Minkowski features of a temporal segment
for lower, middle, and higher disparity respectively. Lastly, all
three disparity features are combined by some weighting factors
to estimate overall disparity feature of a temporal segment by the
following equation.

ND(s) = NDL(s)w3 ·NDM(s)w4 ·NDH(s)w5 (18)

where w3, w4, and w5 are the weighting factors.

Temporal Feature: Jerkiness Measure
In order to compute temporal feature, we determine maxi-

mum jerkiness between the consecutive frames both for left and
right views. Because jerkiness makes more annoying for human
eye in temporal domain. Eventually, jerkiness of any stereo video
is heavily dependent on motion and scene contents of the video
sequence. Therefore, we estimate maximum jerkiness as tem-
poral feature by considering highest motion and scene contents
between the successive frames. To measure video jerkiness as a
temporal feature, we use luminance intensity variation of pixels
between the successive frames both in temporal and spatial do-
mains. The frame selection criteria is the same which is used in
others features extraction. The temporal feature extraction ap-
proach is shown in Figure 4. Firstly, absolute luminance differ-
ence (i.e., temporal information, TI) between the two successive

Figure 4. Temporal feature extraction

selective frames are estimated separately for left and right views
by the following: For left view:

T Il(m,n, t) = |xl(m,n, t +k)−xl (m,n, t)| (19)

where k = 3, and t = 1, 4, 7,..... are the selected frames numbers.
Secondly, the deviation of the temporal information is calculated
by:

T Idl
(t) =

√

(

T I2
l (m,n, t)−T Il(m,n, t)

2
)

(20)

Thirdly, the root mean square, T Irmsl (m,n, t) is estimated by:

T Irmsl (t) =

√

(

T I2
dl
(t)+T Il(m,n, t)

2
)

(21)

Similarly, T Irmsr (t) is estimated for right view. Fourthly, the
maximum temporal feature is computed between the two views
using the following equation:

T Irms( f ) = max
(

T Irmsl ( f ),T Irmsr( f )
)

(22)

Subsequently, the temporal feature, T Irms(s) for a temporal seg-
ment, s is calculated by:

T Irms(s) =
1
F

F

∑
f=1

T Irms( f ) (23)

Finally, the total temporal feature of a temporal segment are
calculated using Minkowski normalization with considering the
past four temporal samples by the Equation 12. Let, MT I(s) be
the Minkowski normalized temporal feature. Then, the tempo-
ral feature is updated by a weighting factor with the following
equation:

T I(s) = MT I(s)w6 (24)

where w6 is the weighting factor for adjusting temporal feature.

Features Combination
The following features’ combination equation is considered

to integrate the spatial, temporal, and disparity features in order
to constitute a continuous stereo video quality prediction model.

S = α(ND)+βZ + γ(T I) (25)

where α , β , and γ are the method parameters. The proposed
model performance is also studied without disparity by the fol-
lowing features combine equation:

S = α +βZ + γ(T I) (26)
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A logistic function is used as the non-linearity property be-
tween the human perception and the physical features [28]. Fi-
nally, the obtained MOS prediction, MOSp, per a temporal seg-
ment is derived by the following equation.

MOSp =
b1

1+exp[−b2(S−b3)]
+b4 (27)

The model’s parameters, weighting factors (w1 to w6), and the
parameters of the logistic function are must be estimated by an
optimization algorithm with the subjective test data. Here, Par-
ticle Swarm Optimization (PSO) algorithm is used for optimiza-
tion [29].

Figure 5. Left view of reference sequence (0 ∼ 75) sec

Figure 6. Left view of reference sequence (76 ∼ 150) sec

Figure 7. Left view of reference sequence (151 ∼ 225) sec

Results
The proposed model’s performance is evaluated by a subjec-

tive dataset. In the following sections, we provide details about
the subjective experiments and the evaluation result of the pro-
posed model.

Subjective Experiments
The Media Information and Communication Technology

(MICT) lab conducted the subjective experiments on color stereo
coded videos by using single stimulus continuous quality evalua-
tion (SSCQE) method in which a processed video sequence was
presented alone without being paired with its reference version
[24]. The experiments considered fifteen stereo video clips of
each 15 seconds length with 640 × 480 pixels, and 30 fps pro-
gressive format. All clips were combined together to create long
sequences of 3 minutes 45 seconds. Left view (grey scale only)
of a reference sequence is shown in Figures 5, 6, and 7. Video
clips order was same in each sequence according to Figures 5, 6,
and 7. Ten symmetric/asymmetric stereo video sequences were
created by using MPEG-2 MP@ML encoder with four kinds of
bit rates 2, 3, 5, and 8 Mbps. The selected bit rates combina-
tions of left (L) and right (R) sequences are (L, R): (2, 2), (3, 2),
(3, 3), (5, 2), (5, 3), (5, 5), (8, 2), (8, 3), (8, 5) and (8, 8) Mbps.
Video clips order was same in every sequence. All reference clips
were produced by NHK, Japan, and made available for research
on stereo video. Each reference clip was 15 seconds length with
1920 × 1035 pixels, 30 fps of 24-bit/pixels RGB color space. An
auto stereoscopic (SANYO) display was used in this experiment
to display the stereoscopic video sequences and the subjects were
instructed about the limited horizontal viewing angle to perceive

Table 1: Subjective test conditions and parameters

Method SSCQE
Samples 2/sec

Coder MPEG-2 MP@ML
Bit Rates 4 kinds (2, 3, 5 and 8 Mbps)

Stereo video clips 15
Video resolution (640×480) 24-bit/pixel, RGB
Each clip length 15 sec

Stereo sequences 10 (Each length 3 min 45 sec)
Subjects 16 (Non expert, students)
Display 10-inch, LCD 3D Auto stereoscopic

Display resolution 640×480 pixels (LR: 320 × 480)
Viewing distance 4H (H = Picture height)
Room illumination Dark

Figure 8. Continuous MOS scores of three sequences (Seq-1, 2, and 3)

3D video correctly. Sixteen non-expert subjects (8 males and 8
females, with average age 23 years) with ages ranging from 20
to 32 participated in the experiment. Most of them were col-
lege/university student and also were non-experts in the area of
video quality. All subjects were screened prior to participate the
session for normal visual acuity with or without glasses, nor-
mal color vision, normal stereo depth perception and familiarity
with the language. The subjective test conditions and parameters
are summarized in Table 1. The subjects were asked to provide
their overall perception of quality on a continuous quality scale
marked with “Excellent”, “Good”, “Fair”, “Poor”, and “Bad”.
The subjective scores were quantized on a scale of [0...100], 0
being the worst quality and 100 being the best. The slider in the
SSCQE test was not a stand-alone hardware device, but a graphi-
cal on-screen slider that was steered by moving the mouse up and
down, i.e. vertical mouse movements were translated directly
into slider shifts. Viewers familiarity with handling a computer
mouse were an additional advantage. SSCQE judgements were
given continuously at a sampling rate of 2/sec. In order to avoid
any recency effects from the previous sequence pair, first clip
(Clip-1, 15 sec) voting was rejected in each sequence. There-
fore, total 420 samples were collected instead of 450 samples (3
minutes 45 seconds) for each sequence. Mean opinion scores
(MOSs) were then computed for each stereo video sequence af-
ter post-experiment screening of the results according to ITU-R
Rec. 500-10 [25]. Two outlier subjects were detected out of six-
teen subjects. Discarding the outliers, the MOS had been com-
puted for each sequence with the 95% confidential interval (CI).
Here, the CI was estimated for each MOS value per 0.5 second.
Out of 10 sequences, we consider six sequences, three symmetric
((5,5), (3,3), and (2,2) Mbps) and three asymmetric ((8,2), (5,3),
and (3,2) Mbps) sequences in this work. Figures 8 and 9 show
the continuous MOS scores of the six sequences.
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Figure 9. Continuous MOS scores of three sequences (Seq-4, 5, and 6)

Performance Evaluation
In order to verify the performance of our proposed model,

we consider six stereo video sequences, three symmetric ((5,5),
(3,3), and (2,2) Mbps) and three asymmetric ((8,2), (5,3), and
(3,2) Mbps) and divide the sequences into two parts for training
and testing. The training dataset consists of three Seq-1(5,5),
Seq-2(8,2), and Seq-3(3,2) symmetric/asymmetric coded stereo
video sequences. The testing dataset consists of the others three
symmetric/asymmetric coded stereo sequences, Seq-4(3,3), Seq-
5(5,3), and Seq-6(2,2), and also there is no overlapping between
the training and testing. The parameters and weighting factors
are obtained by the PSO algorithm with the training sequences
are shown in Table 2.

Table 2: Model parameters and weighting factors

α = 6.865239 β = -37.1035 γ = 8.911039
w1 = -0.007833 w2 = 0.013315 w3 = 0.006783
w4 = 0.039649 w5 = -0.018944 w6 = 0.028219
b1 = 58.04346 b2 = -3.64833 b3 = -21.3781
b4 = 0.852088

Figure 10. MOSp scores with 95%CI of Seq-1, symmetric: (L,R:5,5) Mbps

As our proposed model is designed for continuous quality
prediction, the conventional image/ video quality evaluation
criteria such as, Pearson linear correlation coefficient, Root
mean square error, Spearman rank order correlation coefficient,
and outlier ratio are not suitable for this evaluation. Because,
the evaluation are calculated based on point to point samples
between subjective and predicted scores. However, in SSCQE
method, each human response time is individual. Therefore, it
is quite hard to find any synchronization within subjects with
respect to subjective scores and time. Moreover, our model’s
predicted samples are very particular to the temporal segments
of a stereo video sequence. Therefore, we believe that the
most important thing for continuous quality prediction is how

Figure 11. MOSp scores with 95%CI of Seq-2, asymmetric: (L,R:8,2) Mbps

Figure 12. MOSp scores with 95%CI of Seq-3, asymmetric: (L,R:3,2) Mbps

continuously the prediction confined within the confidential
interval. The continuous MOS prediction (MOSp) for every
sequence with 95%CI and MOS are shown in Figures 10 to 15.
Figures 10 to 15 indicate that the model’s continuous prediction
consistency is sufficient except some clips in sequences, seq-
2(8,2), seq-3(3,2), and seq-6(2,2).

The three major miss prediction areas are marked by circles
in the seq-2(8,2). The circles corresponding clips are Amuse-
ment park (clip-5), Festival with chromakey (clip-9), and Flower
pot (clip-12). The first two clips (clip-5, and clip-9) are in high
motion (i.e., video content changes of adjacent frames in the clips
are very high) and camera work of these two videos are also
high. Therefore, noise increases and decreases rapidly within a
very short time in right view because of low encoding bit rate (2
Mbps). However, there is no significant variation of noise in Left
view due to its high encoding bit rate (8 Mbps). Therefore, sub-
ject can not identify the low quality frames. Although, the low
quality view suppresses perceptual quality the high quality view
significantly restrains the perceptual quality. Whereas, our pro-
posed model try to quantify the highest degradation between the
two views and model can not follow the perceptual compromise
significantly. However, the third miss prediction clip (clip-12) is
very low motion and low content video with only two central ob-
jects (woman with flower pot). Therefore, noise variation is not
high even in low bit rate right view. Moreover, the two objects
in the clip are central objects and close to camera. Consequently,
the low bit rate view could not suppress significantly the overall
perceptual quality of the clip. On the other hand, our proposed
model try to quantify the highest degradation between the two
views with respect to spatial, temporal, and disparity features ir-
respective of any motion classification algorithm to classify the
video clips into different motion group such as high, medium,
and low, the model can not follow the variation of motion signif-
icantly to predict the quality. The same video clip of low motion
(clip-12: woman with flower pot) is also miss predicted in the
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Figure 13. MOSp scores with 95%CI of Seq-4, symmetric: (L,R:3,3) Mbps

Figure 14. MOSp scores with 95%CI of Seq-5, asymmetric: (L,R:5,3) Mbps

sequence, seq-3(3,2). Because, noise variation in the video clip
is localized and not high even though the two views are in almost
low bit rate. Moreover, the two objects in the clip are central ob-
jects and close to camera. Consequently, the subject could not
identify the low quality frames of the clip. However, proposed
model try to quantify the highest degradation between the two
views during the features extraction. Therefore, the model can
easily recognize the low quality frame and gives the prediction
significantly low. In the sequence, seq-6(2, 2) the three major
miss prediction areas are marked by circles. The circles corre-
sponding clips are Amusement park (clip-5), Football (clip-10),
and woman with flower pot (clip-12). Out of the three video
clips, two (clip-5 and clip-10) are in very high motion and one
(clip-12) in low motion. It has already been discussed regarding
miss prediction of the low motion clip in low bit rate scenario.
Here, the first two clips are in high motion (i.e., video content
changing between adjacent frames in the clips are very high) and
camera work of these two videos are also high. Consequently,
noise increases and decreases too rapidly within a very short time
in both views because of low encoding bit rate (2 Mbps). There-
fore, subject can not identify those frames which are high quality.
However, proposed model can easily recognize both the high and
low quality frames. Therefore, the predictions are higher than the
subjective scores.

Since, point to point evaluations are not an appropriate mea-
sure in continuous quality prediction we can consider only out-
lier ratio (OR) as a quantitative measure between the objective
(MOSp) and subjective (MOS) scores that can closely indicate
the prediction consistency of the model. The evaluation results
for training and testing sequences are summarized in Table 3. It
has been observed from Table 3 that the evaluation metric, OR is
sufficient. Specifically, proposed model provides sufficient pre-
diction consistency (lower OR). It has also been observed from
Table 3 that the performance of the proposed model with dis-
parity is better than without disparity for each sequence. The
above results confirm that the proposed model’s features extrac-

Figure 15. MOSp scores with 95%CI of Seq-6, symmetric: (L,R:2,2) Mbps

tions can be a significant measures for continuous stereo video
quality prediction.

Table 3: Evaluation results for training and testing

Seqs B.Rate(Mbps) Ave. 95%CI Training
W. disp. WO. disp.

OR OR
Seq-1 (L, R:5, 5) ± 8.875 0.0357 0.0952
Seq-2 (L, R:8, 2) ± 7.933 0.0786 0.1095
Seq-3 (L, R:3, 2) ± 7.879 0.0857 0.0976

Testing
Seq-4 (L, R:3, 3) ± 8.705 0.0048 0.0571
Seq-5 (L, R:5, 3) ± 7.404 0.0452 0.0690
Seq-6 (L, R:2, 2) ± 7.126 0.1310 0.1452

Conclusion
In this work, we presents a feature based NR computational

quality evaluation model that can continuously predict perceptual
video quality for MPEG-2 MP@ML coded stereoscopic videos.
The model uses different HVS aspects to estimated the features.
The three measures, such as edge distortion, depth, and jerkiness
are determined in the approach. We verify the performance of
the proposed model on a stereo database. The result show that
the model performs quite well over wide range of video content.
Future research can include to classify the video clips into differ-
ent motion groups such as high, medium, and low with different
emphasis so that the model can follow the perceptual variation
of motion significantly to predict the quality. In order to incor-
porate depth perception reliably, the model can also be extended
to identify central objects as well as the relation of the central
objects to other objects. The aspect of jitter in the observer’s re-
action time to change in quality would deserve to be investigated
as well in future work.
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