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Abstract
There is no unique contrast enhancement method, but the

existing methods seem to cover all needs for local or global en-

hancement. Nevertheless, experimental evidence shows that the

two main algorithmic classes (histogram based and high pass

filter based) have their own characteristic artifacts. This work

intends to show that new and simple alternative algorithms in

these classes are possible. The two proposed algorithms intro-

duce bounds on the amount of contrast change, permitting to

always deliver natural looking enhanced images. Comparison

with six state-of the-art methods illustrate the competitiveness of

a fast nonlinear local contrast enhancement method by partial

differential equation, and of a very simple histogram modifica-

tion method.

Introduction
One of the main problems with analogue and digital photog-

raphy is the discrepancy between the recorded color image and

the direct observation scene. Indeed the human visual perception

(HVP) made up of eye, retina and several visual cortex areas is

a precise and complete mechanism to interpret information from

visible light. The HVP has two features which are not owned

by cameras, a high local dynamic range and the color constancy.

The large tonal difference is not a problem for the human per-

ception, which adjusts locally to brightness changes. The pupil,

the iris, and the associated muscles account for the incredible dy-

namic range of the human eye, which further adapts on a given

scene by an active exploration in different gaze directions. A

person is therefore able to perceive the vivid color and the details

of a scene in both shadows and highlight zones. A fixed camera

has no such ability to contrast adjustment and is generally unable

to capture all of the tones in the scene. There are not less than

four issues explaining why the contrast problem is intrinsically

hard: first, an increased time exposure can improve the dynamic

range, but increases the risk of motion blur. Second, a short snap-

shot may avoid blur but decreases the SNR, particularly in dark

image regions. Third, the short time exposure could be com-

pensated by increasing the CCD size, but only in detriment of

the camera resolution. Last but not least, even if the resulting

photograph has a good SNR and no blur, a contrast enhancement

remains necessary in the dark regions to mimic the local adaptive

human perception.

Contrast enhancement therefore remains one of the most

important issues in image processing. Among all image process-

ing techniques, it is the one that has the strongest impact on im-

age quality. Many contrast enhancement techniques have been

introduced to improve the contrast of an image but there seems

to be no universal method for all applications, simply because

the kind of correction depends on the scene.

Our analysis is based on a simple classification of contrast

enhancement techniques in histogram methods and frequency

domain methods. The histogram methods modify local or global

image histograms. Global enhancement methods manipulate the

whole image histogram while local enhancement methods use lo-

cal information, conditioned by fixed or adaptive neighborhood.

Their main constraint is that the histogram stretching, local or

global, must be controlled to avoid revealing quantization and

noise and to avoid squeezing even more some regions.

The most popular global contrast enhancement is the pa-

rameterless global histogram equalization (HE) [4]. HE applies

a nonlinear transform to the intensity levels so that the cumu-

lative distribution function F(x) becomes closest to linear, i.e.

F(x)≃ ax, with a depending on the dimension of the image and

the range of values. The local method proposed by Stark in [8]

modifies the cumulative distribution function of the histogram

to adjust the level of enhancement. Arici et al. [1] propose a

global method to modify the histogram by solving an optimiza-

tion problem. The new histogram is a weighted average of the

input histogram and of the desired uniform one. Probably the

most sophisticated local histogram adjustment was proposed by

Caselles et al. [2], where the contrast change is made condition-

ally to connected components of level sets. We call this method

local contrast enhancement (LHE). Again in this method noise

can be exaggeratedly enhanced in some parts.

Other techniques for image enhancement have been inspired

by the so called “retinex” theory. One such well acknowledged

technique was proposed by Jobson et al. [5], the “multiscale

retinex with color restoration” (MSRCR). Jobson et al. compute

the logarithm of the responses of several center-surround filters

at several scales and combine the results linearly. This method

often remarkably enhances image detail, but suffers from several

serious drawbacks: by attenuating strongly low pass information,

image colors become grayish ; some halo effects near bound-

aries can also occur. As the GIMP implementation reveals, a

good final result can only be obtained by a complex tuning of

many parameters for each image, namely the scales and weights

of the center-surround filters and several color post-processing

parameters. This method based on center-surround contrast can

be accounted for as a sophisticated high pass filter. Similarly, the

methods enhancing low gradients, enhance local contrast. Such

is the Fattal et al. [3] method, providing a contrast enhancement

of low dynamic range images.

Although most mentioned methods can actually deliver out-

standing results on some images, they all are at risk to exces-

sively alter color or enhance the noise, or depend on a delicate

parameter tuning.

In this paper we shall introduce and compare to them two

“robust” enhancement methods, one based on a simple global

controlled histogram modification, and one of the high pass type

manipulating locally the gradient, in the line of the Fattal et al.

method, but with contrast control. This method mainly depends

on a parameter selecting the dark regions to enhance. While the

Fattal et al. method controls the contrast stretch according to

gradient properties only, the proposed method increases the local

gradients on selected regions and relies on the observation that

in most images contrast enhancement is actually only required in
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dark regions.

Both proposed algorithms tackle most of the issues men-

tioned above, and appear to always deliver natural-looking im-

ages. To that effect, natural bounds are respected to limit the

SNR local degradation and color attenuation. The gradient in the

image is never allowed to be multiplied or divided by more than

a fixed factor for which all experiments show that the ideal value

is close to 2.5. A systematic comparison being impossible, due

to the lack of benchmark data and to the variety of image contrast

issues, all algorithms will be compared on several most difficult

cases including images with back light, and the focus will be to

demonstrate which kinds of artifacts can be caused (or avoided)

by each method.

The plan of this paper is as follows. Section 2 proposes

a robust histogram equalization method avoiding artifacts com-

mon to this technique. Section 3 is devoted to a local contrast

enhancement method which enhances nonlinearly the image gra-

dient in automatically selected regions, and reconstructs the im-

age by integrating the Poisson P.D.E. with a fast Fourier solver.

Section 4 compares the two proposed methods with state of the

art local and global methods. Section 5 is the conclusion.

Limited slope histogram equalization
Contrast enhancement is always the result of a compromise.

Indeed, image colors are constrained to belong to a fixed range.

Thus, stretching the contrast in one part may result in squeezing

it in another. This also explains why methods cannot be fully au-

tomatic. The methods introduced herewith will be no exception,

but will be limited to at most two (intuitive) parameters, and ac-

tually a main one. The first idea for a global method is to perform

a piecewise linear transformation of the intensity levels such that

the new cumulative distribution function will be approximately

linear, but where the stretching of the range is locally controlled

to avoid brutal noise enhancement.

Consider an image of dimension D and with L pixels values

in the range [0,255], having a probability density f (x) with cu-

mulative distribution function F(x). We will denote by Fu(x) the

linear cumulative distribution function.

We consider a regular partition 0 = y0 < y1 < · · · < yN =
255 of the interval [0,255], with yk =

255k
N

, k = 0,1, · · · ,N. For

each point yk of the partition we compute xk = F−1(Fu(yk)), k =
1,2, · · ·N − 1 and x0 = 0, xN = 255, we have obtained a new

partition of the interval [0,255].

Figure 1. The distribution of the points xk and yk

For each interval of the new partition Ik = [xk,xk+1] the

algorithm constructs a linear transformation Tk(x) such that Tk

transforms the interval [xk,xk+1] into [yk,yk+1]. Thus,

Tk(x) = yk +mk(x−xk) k = 0,1, . . . ,N −1, (1)

where for each of this linear transformations, the scale factor is

mk =
yk+1−yk

xk+1−xk
.

If this scale factor is too small, the corresponding linear

transformation can compress the histogram, and consequently

could lose too much contrast. On the other hand if the scale

factor is too large the transformation stretches the histogram and

this can produce a noise amplification, mainly in the dark zones

of the image. To avoid this effect the value of the scale factors

must be constrained, and we shall define the new scale factor as

mk =

{

max(mk,0.5) mk < 1

min(mk,3) mk ≥ 1
(2)

These new values of mk modify the partition of the interval

[0,255] i.e., the points yk. Thus the algorithm of the method

writes:

• Fix N, yielding the partition points yk, k = 0,1, . . . ,N of

[0,255].
• Compute xk = F−1(Fu(yk)), k = 0,1, . . . ,N.

• For k = 0, . . .N −1 do

– Compute mk.

– If mk < 0.5 then mk = 0.5 and yk+1 = Tk(xk+1).
– If mk > 3 then mk = 3 and yk+1 = Tk(xk+1).
– Transform by the values x ∈ [xk,xk+1] into y ∈

[yk,yk+1] by y = Tk(x).
– k = k+1.

This method yielding a piecewise equalization of the im-

age with limited slope will be called in the sequel LSHE (limited

slope histogram equalization). This simple algorithm, not docu-

mented in the literature, turns out to be an excellent competitor

for many more sophisticated algorithms.

The number of points N of the partition depends on the im-

age and is the real parameter of the method. When N is large the

result is more similar to a histogram equalization algorithm. Fig-

ure 2 shows an example of an image which has all of its values

concentrated in the dark and middle range. The full histogram

equalization (HE) (Figure 2 b)) produces an unnatural effect cre-

ating constant zones in the background and in the face of the lit-

tle rabbit. If we apply LSHE with N = 3 (Figure 2 c)) this yields

a stretching of the middle range values increasing the contrast

while preserving the continuity of the background. Figure 2 d)

shows the result with N = 5 which is more similar to histogram

equalization. The slope parameters instead can be fixed one and

for all, since they give sound bounds to contrast lost and SNR

degradation.

Local Contrast Enhancement Method
This section introduces a local contrast enhancement based

on the enhancement of the gradient of the image in selected re-

gions. The perception of contrast is directly related to the local

luminance differences, i.e. the local luminance gradients. Meth-

ods which manipulate the gradient need to be integrated into an

new image by solving the corresponding Poisson equation. This

idea has been used for contrast enhancement and seamless image

editing [3], [7]. In Perez et al. [7] the gradient of an image is

enhanced in some region which is selected manually. The corre-

sponding Poisson equations is solved by a multigrid method.

Here we propose a far more automatic and complete method

where the selection of the regions to be enhanced is specified by a

single parameter, and the regions are allowed a complex topology

without additional computational cost.

The idea is to define a new gradient field such that in the

low contrast regions a enhancement function on the gradient is

applied. Given an image f with domain R, we denote by Ω ⊂ R

the selected regions on R, and define a vector field V as

V =

{

ϕ(∇ f ) over Ω
∇ f otherwise.

(3)
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a)

b)

c)

d)

Figure 2. a) Original image and the cumulative distribution function. b)

The result of HE and its CDF. c) The result of LSHE with N = 3. d) The

result of LSHE with N = 5.

Given this vector field V, the problem is to find the image u

whose gradient field is the closest, in L2-norm, to the prescribed

vector field V i.e. the problem is to solve the following optimiza-

tion problem,

min
u

∫

R
|∇u−V|

2. (4)

The minimizer is determined by the Euler-Lagrange equation

with homogeneous Neumann boundary condition

∆u = div V, over R,
∂u

∂n
= 0 over ∂R, (5)

where n is the direction orthogonal to the boundary. This math-

ematical problem has a unique solution up to an additive con-

stant. The final solution is obtained by fitting the min and max

of the solution to the maximal possible interval (usually [0,255]).
An analysis of a wide range of ill-contrasted images shows that

an overwhelming part of the contrast problems is located in the

darker image regions. Thus, we found that the best choice for Ω
is to take an image lower level set,

Ω = {x ∈ R : f (x)< T}.

Figure 3. Top: Original image. Middle: Result of local gradient enhance-

ment in the dark region with ϕ(x) = 2.5x, in which case the algorithm is

equivalent to LHE. Bottom: Result with ϕ(x) = sign(x)|x|0.8, with sharper de-

tail.

Surprisingly, and although this parameter should be left to the

user, T = 50 gave good results in all experiments, probably be-

cause most computer screens lack contrast below this value.

For the enhancement function ϕ , the simplest possibility is

a linear function, which amounts to simply scaling the gradient

of the dark regions. In that case it can be proved that the algo-

rithm proposed below is a particular instance of LHE [2]. Never-

theless, concave power functions give a still better result because

they do not unnecessarily enhance high gradients in dark regions.

Figure 3 shows an example of this method where we have used

ϕ(x) = 2.5x (Figure 3 middle) and ϕ(x) = sign(x)|x|0.8 (Figure

3 bottom).

In conformity with Fourier’s original method, the Fourier

transform can be used to solve the Poisson equation (5), which is

faster than the multigrid method proposed in [7] and [3] and gives

an exact solution. The Neumann boundary condition is implicitly

imposed by extending the original image symmetrically across

its sides, so that the extended image, which is four times bigger,

becomes symmetric and periodic.

In short, the strategy for solving (5) by Fourier technique is

• Quadruplicate by symmetry the discrete domain and V;

• Compute the discrete Fourier transforms of V1 and V2;

• Compute the discrete Fourier transform of the solution ûmn

as ûmn =
2πim

J
̂V1mn+

2πin
L

̂V2mn

( 2πm
J )

2
+( 2πn

L )
2 ;

• Obtain the samples u jl of the solution by the inverse dis-

crete Fourier transform;
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• Restrict them to the initial domain.

Remark: The Fourier transform comes with some over-

head such as padding to the nearest power of 2, but with smart

Fourier libraries, like fftw, having integer values that are not pow-

ers of 2 is no more a complexity issue. Products of small factors

are most efficient, but and O(n logn) algorithm is used even for

prime sizes. Likewise, we mentioned for pedagogic reasons the

quadruplication. In fact, again with smart library like fftw the

quadruplication is implicit and performed directly as a cosine

transform.

Results and Comparison
Unfortunately there is no objective criterion to compare

contrast enhancement techniques. For most metrics evaluating

the contrast in an image, HE achieves usually the best results be-

cause it maximizes the image entropy. Nevertheless, the contrast

enhancement methods in the literature suffer from some artifacts

that make the image unnatural. In this paper we will define some

of these artifacts:

Quantization noise: reveals level lines as shock lines, creating

unnatural edges in the images, typical of histogram meth-

ods;

Halo: luminance oscillation near the strong edges, typical of the

high pass filters;

False colors: caused by excessive changes in color dynamics;

Loss of hue: colors become grayish, typical of high pass filters;

Saturation: loss of contrast in bright regions, typical of his-

togram methods;

Excessive texture enhancement: typical of high pass filter.

usually combined with a loss of color and global contrast

this results in unnatural images with fantastic detail.

This section presents a visual comparison of the proposed

two methods with six state of the art methods illustrating how

the natural bounds proposed in these methods control the arti-

facts caused by others. Table 1 classifies by artifacts the various

methods. Of course a method cannot be adopted just because it

does not create artifacts, the identity being the best method for

this criterion alone. Thus a visual comparison is necessary to

check that the enhancement goal has been attained.

The eight compared methods are the limited slope his-

togram equalization LSHE, the local contrast adjustment LCA,

both presented in the previous sections, the classic contrast en-

hancement histogram equalization HE [4], the simplest color

balance algorithm SCB [6], the adaptive contrast enhancement

ACE [8], the local histogram equalization LHE [2], the multi-

scale “retinex” with color restoration MSRCR [5] and the Fattal

et al. gradient-domain high dynamic range compression HDRC

[3].

The simplest way to stretch or to contract the histogram of

an image is defined by

T (l) =
smax − smin

lmax − lmin
(l − lmin)+ smin (6)

where lmax and lmin are the maximum and minimum values of the

intensity levels in the image, smax and smin are the desired maxi-

mum and minimum values in the histogram. If the factor smax−smin

lmax−lmin

is smaller than 1 this transformation contracts the histogram. If it

is larger than 1 the transformation stretches the histogram, and if

smax = 255 and smin = 0 the transformation stretches, as much as

it can, the histogram. However, many images contain a few aber-

rant pixels that already occupy the 0 and 255 values. Thus, an

often spectacular image color improvement is obtained by “clip-

ping” a small percentage of the pixels with the highest values

to 255 and a small percentage of the pixels with the lowest val-

ues to 0, before applying the affine transform (6), the percentage

of saturated pixels must be as small as possible. This algorithm

called “simplest color balance”, SCB, is proposed in [6], and can

be applied to the intensity histogram or to each R, G, B channel

histogram, depending on the application.

In the comparison below, results of SCB come from the

on line article in http://www.ipol.im. The results of HE, ACE

and MSRCR were obtained with corresponding GIMP plug-

ins. The parameters of ACE and MSRCR we have used

are the plug-in default parameters. The results of HDRC

were obtained from the web page http://www.cs.huji.ac.il/ ∼

danix/hdr/enhancement.html. The authors of LHE [2] provided

us the code for the experiments. The proposed methods and LHE

method were applied to the luminance component. The output

color image was obtained by multiplying each color channel of

the input image with the ratio of their output and input luminance

values to preserve the hue.

The compared methods in divided in two coherent groups:

a) histogram modification based methods (HE, SCB, ACE, LHE

and LSHE); b) high pass filter methods (MSRCR, HDRC and

LCA).

Figure 4 shows the original test images and their corre-

sponding contrast enhanced with the algorithms based on the

modification of the histogram: SCB, HE, ACE , LHE and LSHE.

The simplest color balance (Figure 4 top middle) does not present

any important changes with respect to the original, since the

range of values of the original image is [0,255]. HE (Figure 4 top

right) is probably the most contrasted result but it does not mean

that the resulting image is better in terms of visual quality. The

image has an unnatural look with excessive texture enhancement

and false colors. ACE (Figure 4 bottom left) produces a better

contrasted image but there are some halos on the sky and on the

lake and presents some quantization noise. LHE (Figure 4 bot-

tom middle) and the proposed method LSHE ( Figure 4 bottom

right) produce similar results. Nevertheless a serious difference

is observed in the lake and in the sky, where LHE produces an

unnatural sharp transition of color in the lake revealing quantiza-

tion, while LSHE (N = 4) produces a smoother transition. Table

1 summarizes the artifacts creates by each method.

Figure 5 shows the results of high pass filter methods,

HDRC, MSRCR and the proposed method LCA. The HDRC re-

sult, Figure 5 top right, is probably the best result, but Fattal et

al. work in a multiscale framework, while the proposes method

works in a single scale only, therefore it is much simpler and the

results are comparable. The swan in the MSRCR, Figure 5 bot-

tom left, loses the texture and shadows of feathers, the swan is

saturated to white, and the blue flowers have lost the color.

Figure 6 shows a comparison of all the methods, except

HDRC. The SCB result is exactly the same as the original image,

because the range covers the interval [0,255]. HE produces an

excessive texture enhancement on the rock and false colors. ACE

produces quantization noise and excessive texture enhancement.

LHE produces quantization noise mainly on the sky. MSRCR

creates saturation in the sky and the image becomes grayish. Like

HDRC but simpler, LSHE and LCA produce more natural im-

ages and do not create artifacts. See Table 1.

Conclusion
This paper has specified two methods for contrast enhance-

ment, one global with low computational cost and another far
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Account of the artifacts caused by the eight compared methods

HE ACE LHE MSRCR HDRC LSHE LCA SCB

Quantization noise X X X

Halo X X

False colors X X

Loss of hue X X

Saturation X X

Excessive texture X X X

Figure 4. Comparison of the histogram based methods. Top left: Original image. Top middle: SCB result. Top right: HE result. Bottom left: ACE result.

Bottom middle: LHE result. Bottom right: 4 points LSHE result.

more sophisticated based on Poisson editing. In both methods the

principal novelty is a careful control of noise enhancement and

the preservation of hue. We compared both methods to six other

state of the art methods. The outcome of such a comparison be-

ing necessarily subjective, we picked characteristic difficult ex-

amples. For the histogram methods, LSHE is extremely simple

and guarantees good results in most cases, while not being able

to tackle images with dark regions, where a local enhancement

is necessary. In all cases, the local contrast enhancement (LCA)

seems to give the best attainable result, while creating no artifact,

like HDRC. The obvious drawback of this last algorithm is the

dependence on two necessary parameters, one selecting the ex-

tent of dark regions to enhance, and one selecting the parameter

to amplify the gradient. But even these parameters are intuitive

and were fixed to the same values for all images. Both methods

actually share a manipulation of image gradient, which seem to

avoid the artifacts of more global high-pass filter methods like

retinex (MSRC).
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Figure 5. Comparison of high pass filters. Top left: original image. Top right: HDRC result. Bottom left: MSRCR result. Bottom right: LCA result.

a) b) c)

d) e) f)

g) h)

Figure 6. a) Original image. b) SCB result. c) HE result. d) ACE result. e) LHE result. f) MSRCR result. g) 2 points LSHE result. h) LCA result.
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