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Abstract
This work introduces a novel way to reduce point-wise noise

introduced or exacerbated by image enhancement methods lever-

aging the Random Spray sampling approach. Due to the nature

of the spray, the sampling structure used, output images for such

methods tend to exhibit noise with unknown distribution. The

proposed noise reduction method is based on the assumption

that the non-enhanced image is either free of noise or contam-

inated by non-perceivable levels of noise. The dual-tree complex

wavelet transform is applied to the luma channel of both the non-

enhanced and enhanced image. The standard deviation of the

energy for the non-ehanced image across the six orientations is

computed and normalized. The normalized map obtained is used

to shrink the real coefficients of the enhanced image decomposi-

tion. A noise reduced version of the enhanced version can then

be computed via the inverse transform. A thorough numerical

analysis of the results has been performed in order to confirm

the validity of the proposed approach.

Introduction
The field of image enhancement has been one of the most

active even before digital imagery achieved a consumer status,

but despite its age it has never stopped evolving. The present

work introduces a novel denoising method, tailored to address

a specific image quality problem expressed by Random Spray

based image enhancement algorithms.

Random sprays are two-dimensional collection of points

(coordinates) with a given spatial distribution around the origin.

Such structures can be scaled and translated to sample an image’s

support in a way similar to that employed by the Human Visual

System (HVS). Yet, the peaked nature of the sprays introduces

unwanted noise in the output image. The amount and statistical

characteristics of the noise so introduced depend on several fac-

tors, among which are image content and spray properties. Thus,

common noise reduction methods tailored to deal only with one

particular kind of noise (e.g. Gaussian noise) would not find the

expected conditions.

The method here described approaches the problem via

wavelet coefficient shrinkage. Algorithms based on wavelet

shrinkage have a long history, nonetheless this work presents a

novel view on the subject. This article was particularly inspired

by the works on the Dual-tree Complex Wavelet Transform by

Kingsbury [6], the work on the Steerable Pyramid Transform

by Simoncelli et al. [15], and the work on Wavelet Coefficient

Shrinkage by Donoho and Johnstone [3].

Dual-Tree Complex Wavelet Transform
Kingsbury developed the Complex Wavelet Transform

(CWT) in order to solve certain problems that arise with the

traditional Discrete Wavelet Transform (DWT), as well as other

more advanced methods such as the Steerable Pyramid Trans-

form (SPT) [5]. Similarly to the SPT, in order to retain the whole

Figure 1: Quasi-Hilbert pairs wavelets used in the Dual Tree

Complex Wavelet Transform

Fourier spectrum, the CWT needs to be overcomplete by a factor

4, i.e. there are 3 complex coefficients for each real one. The

CWT is also efficient, as it can be computed through separable

filters, yet it lacks the Perfect Reconstruction property.

Kingsbury also introduced the concept of Dual-tree Com-

plex Wavelet Transform (DTCWT), which has the added charac-

teristic of Perfect Reconstruction at the cost of only approximate

shift-invariance [6].

Since the a full discussion on the Dual-Tree Complex

Wavelet Transform would be too cumbersome, only a brief in-

troduction the 2D variant of the DTCWT is given. The reader

is referred to the the work by Selesnick et al. [14] for a very

comprehensive coverage on the DTCWT and the relationship it

shares with other transforms.

The 2D Dual Tree Complex Wavelet Transform can be im-

plemented by using two distinct sets of separable 2D wavelet

bases, as shown below.

ψ1,1(x,y) = φh(x)ψh(y), ψ2,1(x,y) = φg(x)ψg(y),
ψ1,2(x,y) = ψh(x)φh(y), ψ2,2(x,y) = ψg(x)φg(y),
ψ1,3(x,y) = ψh(x)ψh(y) ψ2,3(x,y) = ψg(x)ψg(y)

(1)

ψ3,1(x,y) = φg(x)ψh(y), ψ4,1(x,y) = φh(x)ψg(y),
ψ3,2(x,y) = ψg(x)φh(y), ψ4,2(x,y) = ψh(x)φg(y),
ψ3,3(x,y) = ψg(x)ψh(y) ψ4,3(x,y) = ψh(x)ψg(y)

(2)

The following equations shows the relationship between

wavelet filters h and g

g0(n)≈ h0(n−1), for j = 1 (3)

g0(n)≈ h0(n−0.5), for j > 1 (4)

where j is the decomposition level.

When combined, the bases give rise to two sets of real, two

dimensional, oriented wavelets (see Fig. 1).

ψi(x,y) =
1√
2

(

ψ1,i(x,y)−ψ2,i(x,y)
)

(5)

ψi +3(x,y) =
1√
2

(

ψ1,i(x,y)+ψ2,i(x,y)
)

(6)
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ψi(x,y) =
1√
2

(

ψ3,i(x,y)+ψ4,i(x,y)
)

(7)

ψi +3(x,y) =
1√
2

(

ψ3,i(x,y)−ψ4,i(x,y)
)

(8)

The most interesting characteristic of such wavelets is that

they are approximately Hilbert pairs. One can thus interpret the

coefficients deriving from one tree as imaginary, and obtain the

desired 2D DTCWT.

Random Spray Sampling
Random Spray sampling was introduced for the first time

in [11], by Provenzi et al. Random sprays are an elaboration

over the physical spatial scanning structure used by Land in the

seminal work on Retinex [7]. In the experiments ran at the time,

Land used a structure resembling a set of paths departing from a

central point, on which he mounted a number of photo-detectors.

Land’s model gave rise to the path-wise family of Retinex

implementations [8, 13], which directly transposed Land’s ma-

chinery into piece-wise linear paths used to scan the input image,

and that, in turn, became the starting point of RSR.

A single point of a random spray may be generated using

the following formulation, and the whole spray is obtained by

reiterating the process

p = [ρ cos(θ ) ,ρ sin(θ )] (9)

where ρ = rand(0,R) and θ = rand(0,2π) and the function rand

indicates the uniform random distribution. In particular, R is go-

ing to be set as the diagonal of the image, so that the spray may

cover the whole of it.

Each spray can then be used to sample the image by trans-

forming its points as follows

p̃ = p+ i (10)

where i =
[

ix, iy
]

are the coordinates of the pixel used as refer-

ence for sampling.

The problem of noise
The sharp selection imposed by the spray sampling leads, in

certain images, to the unwanted effect of increasing the relevance

of noise already present in the image. This is especially true for

algorithms that employ differential operators in their computa-

tions, such as RSR and RACE.

The problem of noise has been partially addressed in [12]

through the use of a form of attachment to the original data,

strongly reducing the insurgence of unwanted speckles in uni-

form areas. Such process can be summarized in the following

equation, computed for each chromatic channel

Õ (x,y) = β (x,y)O(x,y)+(1−β (x,y)) I (x,y) (11)

where I indicates the input image, O the output image of non-

regularized RSR or RACE, and β is computed per-pixel. Given a

specific spray k, the local parameter is automatically determined

for each chromatic channel

βk (x,y) = (2σk (x,y))
σmin
σmax (12)

where the quantities σmin and σmax are the image-wise standard

deviations, while σk(x,y) is the (local) standard deviation for the

spray.

Proposed method
The main idea behind this work can be subsumed in a simple

sentence: highly directional content is what conveys the largest

part of information to the HVS. This statement is backed up by

past research, such as the Retinex theory as well as the high-order

gray-world assumption (alias gray-edges) [16]. In particular, the

local white patch effect described by Retinex comes into play

when, for a given channel, the scanning structure samples a pos-

itive intensity change. For obvious geometrical reasons intensity

changes of directional nature are are more easily crossed (or sam-

pled) than point like structures such as noise.

Following such idea, the proposed method revolves around

the shrinkage of the real wavelet coefficients generated by the

Dual Tree Complex Wavelet Transform, according to data direc-

tionality.

Furthermore, since the human visual system is highly sen-

sitive to changes in luminance [17], the presented approach first

converts the image in a space where chroma is separated from

luma (such as YCbCr), and it operates on the wavelet space of

the luma channel. While this may seem counter intuitive, since

spray-based image enhancement algorithms usually operate per

channel, the results show vast improvements without visiblecolor

artifacts.

A final, fundamental assumption is made: the input image

is considered to be either free of noise, or noise is sopposed to be

present but not perceivable. If such assumption holds, the input

image contains the information needed to successfully perform

noise reduction.

The algorithm for the proposed method is given in Alg. 1.

Algorithm 1 The algorithm for the proposed noise-reduction

method.

ERGB← enhance(IRGB)
IYCbCr← rgb2ycbcr(IRGB)
EYCbCr← rgb2ycbcr(ERGB)
bI ← dtcwt(YI)
repeat

bE ← dtcwt(YE)
for j = 1→ J do

for k = 1→ 6 do

e j,k← ∑k bI
j,k

end for

w j←mm(stddev
k

(e j,k),median
k

(e j,k),γ j)

for k = 1→ 6 do

b̃E
j,k← w j ·bE

j,k +(1−w j) ·bI
j,k

if ord(bE
j,k) ∈ {1,2} then

bO
j,k← b̃E

j,k
else

bO
j,k← bI

j,k
end if

end for

end for

YE ← YO

until ssim(YI ,YO)< 0.001

OYCbCr = concat(YO,ECbCr)
ORGB = ycbcr2rgb(OYCbCr)

Wavelet coefficients shrinkage
Assuming level j of the wavelet pyramid, one can compute

the energy for each direction k ∈ {1,2, ...,6} as

e j,k = (bI
j,k)

2 +(iIj,k)
2
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Coefficients associated with non directional data will have

similar energy for all directions. On the other hand, highly direc-

tional data will give rise to high energy for one or two directions

(this is not entirely true, as more than two directions may have

high energy for “L” ot “T” shaped features, but it does not com-

promise the efficacy of the method to large extents).

The standard deviation of energy across the six directions

k = 1,2, ...,6 is hence computed as a measure of directionality.

e j = stddev
k

(e j,k)

Standard deviation is, obviously, non-normalized and the

range may vary widely. In order to make use of the computed

data, we resort to the Michaelis-Menten function [9] for normal-

ization of the data range. The Michaelis-Menten function is a

sigmoid-like function that has been used to model many species’

cones response, and thus looks to be a perfect candidate for the

job. The equation is as follows:

mm(x,µ,γ) =
xγ

xγ +µγ
(13)

where x is the quantity to be compressed, γ a real-valued expo-

nent and µ the data expected value (or its estimate).

A normalized map of directionally sensitive weights is ob-

tained as

w j = mm(e j,median
k

(e j,k),γ j)

where the choice of γ depends on j as explained later on.

A shrinked version of the enhanced image’s real coeffi-

cients, according to data directionality, is then computed as

b̃E
j,k = w j ·bE

j,k +(1−w j) ·bI
j,k (14)

Since we are interested in retaining directional information,

the output coefficients are computed according to Eq. 15

bO
j,k =

{

b̃E
j,k, if ord(bE

j,k) ∈ {1,2}
bI

j,k, if ord(bE
j,k) ∈ {3,4,5,6}

(15)

where ord is a function that returns the index of a coefficient in

bI
k=1,2,...,6 when the set is sorted in descending order.

The meaning of the whole sequence can be roughly ex-

pressed as follows: where the non-enhanced image shows direc-

tional content replace its two most significant coefficients with a

(possibly) shrinked version of those from the enhanced image.

Parameter tuning
When dealing with functions having free parameters, a fun-

damental problem is that of finding their optimum values. This

can often be attempted with optimization techniques, but for this

particular case it is unfeasible.

In order to at least provide a reasonable default value for

γ j , the parameter of the Michaelis-Menten function, as well as

the depth of the complex wavelet decomposition J, three im-

ages from the USC-SIPI Image Database [1] were chosen. Such

images provide a good mixture of mostly high-frequency detail

(Mandrill), balanced high- and low-frequency content (Lenna),

and mainly low frequency content (Splash). The chosen test im-

ages are shown in Fig. 2.

In different rounds, Gaussian, Poissonian and Speckle noise

was added to the luma channel of said images and the proposed

noise reduction method was run with 3 wavelet levels and val-

ues for γ j varying from −5 to 10 in unary steps for the first and

Table 1: PSN ratios and SSIM scores for from the USC-SIPI

database

Noisy Denoised

Noise Image PSNR SSIM PSNR SSIM

Gaussian

Lenna 27.43 0.58 35.78 0.95

Splash 27.68 0.49 36.37 0.93

Mandrill 27.45 0.73 34.78 0.98

Poissonian

Lenna 30.33 0.84 35.78 0.95

Splash 30.92 0.82 36.37 0.93

Mandrill 30.16 0.91 34.78 0.98

Speckle

Lenna 27.07 0.55 33.96 0.94

Splash 27.55 0.53 33.84 0.94

Mandrill 26.96 0.69 33.87 0.97

second levels of the decomposition. The value of γ3 was fixed to

1, reducing the Michaelis-Menten function to the Naka-Rushton

formulation [10].

Since the decomposition depth is more dependent on the im-

age than on γ j, it was impossible to determine a single optimum

value. Nonetheless, reasonable bounds for “normal” amounts of

noise were found to be Jmin = 1,Jmax = 3. On the other hadn

J was set to 4 when testing versus the Foveated NL-means ap-

proach. Please note that J is the only parameter that should be set

explicitly, since the variation in image quality can be extremely

evident.

Performance was tested employing the SSIM [18] measure,

holding the unaltered luma channel as absolute reference. Iter-

ations were stopped using a threshold of t = 0.001. Both SSIM

scores as well as PSNRs are given in Table 1.

For all images the score improves for positive values of γ at

all levels, yet, the change is less sudden for the first level. While

non-optimal for all possible images, values of 3 and 1 for γ at the

first and second level, respectively, represent a reasonable choice.

Experiments
In order to test our approach, we modified the images shown

in Figs. 2a - 2c so to reduce the available dynamic range and

introduce a strong color cast. The resulting images have been

used as test subjects, as illustrated in Fig. 2.

The proposed approach was also compared to a re-

cent development on the Non Local means approach by

Buades et al. [2], namely the Foveated NL-means by Foi and Bo-

racchi [4]. Three images were chosen from said work, and

the proposed noise reduction method was used after Gaussian

noise of various standard deviation was added. Both the PSNR

and SSIM scores were computed and they are reported in Ta-

bles 2 and 3: the numbers differ slightly from the original article

since the images were generated anew. While the comparison

is not entirely fair, as NL-means is a reference-less denoising

method, it clearly shows the advantage of assuming a partial ref-

erence.

Conclusions
This work presented a novel approach to noise reduction

which aims at image enhancement methods that make use of the

Random Spray sampling technique.

In order to achieve noise reduction, the proposed method

leverages the data orientation discriminating power of the Dual

Tree Complex Wavelet Transform, as well as the informa-

tion contained in the non-enhanced image. Wavelet coefficient

shrinkage and selection are the basic mechanisms underlying the

iterative processing. Unlike most of the state of the art, this ap-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: Test images from the UCS-SIPI image database, results. Lenna was enhanced with RSR, while the others with the spray

formulation of ACE. The noise reduction algorithm was run with J = 3 for images Lenna and Splash, and J = 2 for Mandrill.
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(a) Lenna, original (b) noisy, σ = 50 (c) Foveated NL-means (d) Proposed

(e) Barbara, original (f) noisy, σ = 70 (g) Foveated NL-means (h) Proposed

(i) Boats, original (j) noisy, σ = 100 (k) Foveated NL-means (l) Proposed

Figure 3: Comparison between the proposed method and Foveated NL-means. Noise is Gaussian with standard deviation as per

captions.
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Table 2: Comparison of PSNRs for three images taken from the

work on Foveated NL-means.

Barbara Boats Lenna

σ FNLM Our FNLM Our FNLM Our

10 33.39 41.71 32.73 42.76 35.05 43.24

20 30.46 37.86 29.89 38.94 32.39 39.43

30 28.08 35.83 28.05 36.93 30.51 37.42

40 26.27 34.52 26.59 35.46 28.91 36.19

50 24.77 33.61 25.24 34.37 27.63 35.11

60 23.61 32.60 24.14 33.45 26.43 33.83

70 22.68 32.04 23.29 32.52 25.37 32.79

80 21.80 31.17 22.42 31.57 24.37 31.81

90 21.02 30.60 21.75 30.88 23.32 31.19

100 20.33 30.33 21.06 30.20 22.41 30.52

Table 3: Comparison of SSIM scores for three images taken from

the work on Foveated NL-means.

Barbara Boats Lenna

σ FNLM Our FNLM Our FNLM Our

10 0.97 0.99 0.96 0.99 0.96 0.99

20 0.94 0.98 0.90 0.98 0.93 0.98

30 0.89 0.97 0.84 0.97 0.90 0.96

40 0.85 0.96 0.79 0.95 0.86 0.95

50 0.80 0.94 0.74 0.94 0.83 0.93

60 0.75 0.93 0.69 0.92 0.79 0.91

70 0.71 0.91 0.65 0.91 0.77 0.90

80 0.67 0.90 0.61 0.89 0.74 0.88

90 0.63 0.88 0.58 0.88 0.71 0.87

100 0.60 0.87 0.55 0.86 0.68 0.85

proach requires no prior knowledge of the statistical properties

of noise. The only parameter that the user is required to choose

explicitly is the depth of the DTCWT.

Prformance has been tested in two ways. First, noise with

different statistical properties has been added to images with

a well known reference. The proposed approach was able to

achieve great improvements in both PSNRs and SSIM scores in-

dependently of the noise distribution.

The propsed approach has then been compared to a recent

development of the NL-means denoising algorithm, using im-

ages with a well known prior contaminated by Gaussian noise

of varying standard deviation. Our method shows consistent in-

creases in PSNR of about 9 dBs on average, as well as higher

SSIM scores, never dropping below 0.85.

The proposed noise reduction approach shows great ability

in removing noise without altering the underlying structures, al-

though its performance is naturally limited by the contrast of the

non-enhanced image.
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