
Towards a Multivariate Probabilistic Morphology

for Colour Images
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Abstract

The mathematical morphology for colour images faces the del-

icate issue of defining a total order in a vectorial space. There

are various approaches based on partial or total orders defined

for color images. We propose a probabilistic approach, that uses

principal component analysis (PCA), for the computation of the

convergence colours, i.e. the extrema of a set. Then we define two

pseudo-morphological operations, the dilation and the erosion,

applying the Chebyshev’s inequality on the first eigenvector of

the image colour data. As an application, we use our approach to

extract the Beucher colour gradient. We discuss the advantages

and disadvantages of our approach, we comment our results and

then we conclude this paper.

Introduction

The classical morphology was defined for binary objects. The

extension of the morphology from binary to gray-scale by Serra

[16], Sternberg [17] and Haralick [6] introduced a natural mor-

phological generalization of the dilation and erosion, the two fun-

damental morphological operations. However, the approaches

are limited to the gray-scale domain and their extension to the

colour domain is not straightforward.

There exist several approaches for colour images [8] [10] [9],

which are based on total ordering in the three-dimensional colour

space. Some of them, are defined in HLS [11] [7] [2] or simi-

lar perceptual colour spaces, and the defined order strongly de-

pends on the choice of H0 - the hue origin. Therefore, for the ap-

proaches that use a lexicographical order, the convergence points,

i.e. the minimum and the maximum of the set of points in the en-

tire image, are basically specified in the process of defining the

priority of the colour planes. In addition, for several approaches,

like [14] for instance, the dilation and erosion converge towards

white and black, respectively, i.e. the “natural” extrema of the

colour space. A generalized total order in a colour space has

been proposed by J. Angulo in [1], but this still does not solve a

fundamental problem: the order is not “natural” - red shades are

larger than green shades, and further on, according to the defined

order, other red shades are smaller than the same green ones (see

Figure 1(c), where ∆2 should be smaller than ∆1 from the human

perception point of view, which is not the case when ordering

based on priority per component is used) and this kind of ap-

proaches leads to non-linearity from a human perception point of

view.

Recently, there has been an attempt of using probability den-

sity functions in order to define the morphological operations for

colour images [18], where the statistical depth functions are used

for establishing an order between the colours. Other recent ap-

proaches are based on fuzzy logic [5] and a great interest has also

been shown on adaptive morphology [3].

(a) total ordering (lexicographical) in RGB

(b) total ordering (lexicographical) in HLS

(c) detail of (a)

Figure 1. Colour total ordering in RGB and HLS with priority defined per

channel.

A multivariate probabilistic approach

The Minkowski definition of the erosion and dilation relies on the

computation of the maximum and the minimum values of a set.

Therefore the key element of the classic morphology is the com-

putation of the extrema of a given set [16]. What we propose is

to construct the maximum and the minimum values in a prob-

abilistic manner. Some probabilistic approaches already exist

by Haralick[6] and Ivanovici [12], but they are either for binary

signals or they are restricted to a marginal analysis. The work

of Barnett [4] has to be also mentioned, as it defines a generic

framework for the ordering of multivariate data.

Our approach first determines two convergence colours which

will constitute the global maximum and minimum of the set of

colours for a given image. The two extrema are computed ac-

cording to the following algorithm:

1. compute the 3D histogram in the RGB color space

2. apply PCA in order to determine the principal vectors of

the multivariate colour data

3. apply Chebyshev inequality on the first eigenvector (the

one corresponding to the largest eigenvalue) in order to es-

tablish the two extrema

4. choose the maximum colour as the one with the largest en-

ergy (the minimum colour will be the other one);

The Chebyshev inequality [13] states that for a positive random

variable ξ with expected value ξ and standard deviation σξ we

can write: P{|ξ −ξ | ≥ kσξ } ≤
1
k2 .

This offers us the possibility of constructing the extrema of a

given set, based on the mean and the standard deviation. In our

case, the random variable is represented through the projection

of the points on the first eigenvector and, consequently, the two

extrema (E1 and E2) may be computed along this eigenvector as:
{

E1{ξ}
def
= ξ + kσξ ,

E2{ξ}
def
= ξ − kσξ

(1)
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The computation along the first eigenvector is done by rotating

the entire set of points around the mean point, as required by the

PCA, so that the first eigenvector is identical with the X axis of

the original space. In Figure 2 the 2D case is depicted, showing

the rotation and the construction of the extreme points for a set

of random points of zero mean. We computed k automatically,

as the largest possible value so that both global extreme points

fall inside the RGB cube. At the limit, it is accepted that one

of the global extreme points to be on the surface of the RGB

cube and the other one inside. In this way we make sure that

the resulting colours remain inside the RGB colour cube and still

can be rendered for visualization. A large value of k may lead

to extrema which are outside the gamut and therefore cannot be

rendered. In order to choose the maximum and the minimum

between the two extrema, we investigate the energy of the two

values, expressed as the volume given by the multiplication of

the 3 colour components, V (E) = rE ×gE ×bE , or defined as the

sum of the squares of the three components, V (E) = r2
E
+ g2

E
+

b2
E

, which may be used if the first definition leads to equality

between the two points.

Figure 2. Rotation of the original set of points (blue stars) so that the first

eigenvector to be identical with the X axis of the space (red circles). Extrema

E1 and E2 computation along the principal eigenvector using equation (1).

Once the convergence colours are determined, the local mini-

mum and maximum (in the neighborhood of size ε in case of a

flat structuring element) are computed in the following way:

1. compute two local extreme points e1 and e2 similarly with

the global extrema E1 and E2;

2. calculate the projection of the two local extrema on the line

determined by the global minimum and maximum (the di-

rection given by the first eigenvector of the entire image,

see Figure 3);

3. translate the two projections so that their mean to be the

same as the global extrema mean; the translation is per-

formed in order to avoid situations in which both local ex-

trema projections are outside the segment determined by

the global extrema, both on the same side of one extremum

(in this case, if we simply consider the distances to the

global extrema, the local minimum and maximum would

be swapped);

4. the local extrema corresponding to the point which after

projection and translation is the closest to the global maxi-

mum will be the local maximum; the other one will be the

local minimum;

5. if the two projections are equal (i.e. the local and global

first eigenvectors are orthogonal), the local extrema are

computed in the same way but using the second eigenvec-

tor of the local data; if again, the two projections of the lo-

cal date are equal we consider the third eigenvalue for con-

structing the extrema—but in our experiments we haven’t

encountered these situations.

(a) “inside”

(b) “outside”

Figure 3. Possible orientations of local extrema with respect to global

extrema. Pe1
and Pe1

are the projections of local extrema on the direction

given by the global extrema .

For our approach we used the RGB colour space and the distance

for the local extrema computation was Euclidian, defined for

two colours C1 = (r1,g1,b1) and C2 = (r2,g2,b2) as d(C1,C2) =
√

(r1− r2)2 +(g1−g2)2 +(b1−b2)2.

Results

As we already pointed out, there exist several approaches for

colour morphology and the difficulty lies in the choice of the

“good” one. Classically, morphological operators are combined

to produce non-linear filters, but how could one validate one ap-

proach by just subjectively assess the result from a visual point

of view? In order to prove the usefulness of our approach we

present also the results of a gradient extraction application based

on the Beucher’s expression [15] of a symmetrical gradient.
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We use the images in Figure 4 for testing our method.

(a) Miro (b) apple (c) candies (d) fractal

Figure 4. Original colour test images.

We present a first set of results in Figures 5 and 6 for different

sizes ε of the structuring element.

Figure 5. Dilations (first column), erosions (second column) and

Beucher gradients (third column) for various structuring element sizes (ε =

3,5,7,9 & 11) for the ”singer” painting by Miro.

As one would expect, the convergence point for the dilation of

”Miro” image is practically white = (250, 255, 251), but the

convergence point for the erosion, given by the PCA approach

is not black = (163, 153, 146). This is the reason why the

black regions in the image are lightened after erosion. Another

important remark is that both the dilations and erosions became

blurrier than the original image, similar to the effect of a low-pass

filter.

Figure 6. Dilations (first column), erosions (second column) and

Beucher gradients (third column) for various structuring element sizes (ε =

3,5,7,9,11,13 & 15) for the ”apple” image.

This happens because the PCA is computed relative to the mean

of each local set of points and that mean does not change dra-

matically between two consecutive local sets. The convergence

points for the ”apple” image are = (207, 215, 142) for dila-

tion and = (72, 81, 0) for erosion. It can be seen that the apple

stalk is favored by the erosion operation being emphasized by it,
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while the dilation tend to lighten the whole object. This is in

fact only a visual perception because the dilation and the erosion

operations move all the colours in the image towards the maxi-

mum and respectively the minimum global points. Also notice

the disappearance of the specularity of the water drops, which is

a desired effect of the morphological erosion, i.e. the removal of

small objects, smaller than the structuring element size.

Another set of results is presented in Figures 8 and 9. In this

case the morphological operations are applied to colour textured

image. For the candies image, the convergence points are =

(255, 167, 102) for dilation and = (44, 26, 23) for erosion

while for the fractal image the global maximum is = (88, 131,

255), and the global minimum is = (205, 57, 30). On these

results one may notice some discontinuity regions. These discon-

tinuities appear due to the fact that the projections of the local ex-

treme points, in the local minimum and maximum computation,

change their order relative to the global extrema while sweep-

ing the structuring element onto the image (the phenomenon is

illustrated in Figure 7). The discontinuities are more obvious in

textured images where the texture is uniform but colour is not,

thus the erosion and dilation based on the colour distribution are

also discontinuous.

Figure 7. Evolution of the relative orientation of the local extrema with

respect to global extrema, causing discontinuities.

ε = 3 ε = 5 ε = 7

ε = 9 ε = 11 ε = 13

Figure 8. Dilations (1st and 3rd rows) and erosions (2nd and 4th rows) for

various structuring element sizes for ”candies”.

ε = 3 ε = 5 ε = 7

ε = 9 ε = 11 ε = 13

Figure 9. Dilations (1st and 3rd rows) and erosions (2nd and 4th rows) for

various structuring element sizes for ”fractal”.

Duality

In this section we prove both mathematically and experimen-

tally the duality property of our pseudo-morphological operators.

Mathematically, in any local neighborhood of size ε , because the

distances between the mean of the colour points O and the two

extrema are equal, d(O,E1) = d(O,E2) = kσξ , this implies that

one extremum is the complement of the other, with respect to the

origin O, therefore E1 = E2 =−E2 and vice-versa.

In Figure 10 we present the dilation of the “Miro” image with

a structuring element of size 11 (a), the negative of the original

image (b), the erosion of this image with the same structuring el-

ement size (c) and the negative of the erosion (d), which is equal

to the dilation of the original image. The difference image (e)

is completely black, except for two pixels for which there is an

absolute difference of 1 for one of the colour components, most

likely as a consequence of type conversions and rotations. The

black border due to the size of the structuring element affecting

image (a) was disregarded.

Conclusions

We propose a multivariate probabilistic way to chose the conver-

gence colours for morphological operations. We define a pseudo-

dilation and a pseudo-erosion for colour images based on the

principal component analysis combined with the Chebyshev in-

equality with respect to the convergence colours statistically cho-

sen. The key element of our approach is the definition of the ex-

trema of a given set, chosen along the first eigenvector direction

for a cloud of colours.

Despite the fact that the RGB is not a perceptual colour space,

the three colour components are highly correlated which is ap-

propriate for the use of the PCA in order to determine the trend
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(a) original (b) dilation (c) negative of

(ε = 11) original

(d) erosion of (c) (e) negative of (d) (f) difference of

(ε = 11) (b) and (e)
Figure 10. Experimental proof of the duality property.

of the colours in the image.

We presented our results for both object images and texture im-

ages. We prove the duality of the two pseudo-morphological op-

erators and we show that our approach can be successfully used

to compute a colour gradient, thus proving both the usefulness

and the validity of our approach. We conclude that our approach

may represent an alternative for the choice of the convergence

colours or for the choice of the hue origin as opposed to an ar-

bitrary specification. The disadvantages of our method would be

that for textured images some discontinuities appear in the re-

sults and that the results do not preserve the original colours by

creating new colours. In our future work we consider using the

CIELab colour space instead of RGB due to the fact that the Eu-

clidian norm, which we use, introduces nonlinearities in the RGB

colour space.
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