
Optimal Global Approximation to Spatially Varying Tone Map-
ping Operators
Jakkarin Singnoo, Graham D. Finlayson, School of Computing Sciences, University of East Anglia, Norwich, UK

Abstract
Compared with spatially-varying tone-mapping operators,

global tone maps have the advantage that the input is mapped to
an output image without introducing spatial artifacts common to
spatially-varying tone-mapping operators (e.g. halos and inten-
sity inversions). However some local detail can be compressed
(visually lost). In this work, we propose a global tone-mapping
operator that optimally, in a sum of least-squares sense, approx-
imates spatially-varying tone-mapping operators.

Our method is based on a modification of the simple but el-
egant constrained optimization technique called Pool-Adjacent-
Violators-Algorithm (PAVA). In a second step, we show how any
lost local detail can be brought back through copying, in an edge
sensitive manner, detail from the original input (an approach al-
ready developed in the literature).

Our new global tone-curve approach has a specific advan-
tage: we show it suffices to learn the tone-curve by processing
a small thumbnail and then produce the final output by applying
the tone-curve to the full resolution input. Not only does pro-
cessing on thumbnails deliver excellent results we can, using this
approach, significantly increase the speed of tone-mapping op-
erators.

To evaluate our method we carried out a paired compari-
son psychophysical experiment. Preference scores resulting from
the experiment show that in general the perceived quality of our
proposed operator is similar (equally preferred) to a range of
spatially-varying tone-mapping operators.

Introduction
HDR images are formed by blending together multiple ex-

posures [3] and have the advantage that the true range of inten-
sities in the original scene are recorded (which is not the case
for typical camera images where highlights and shadows are of-
ten clipped). However, typical display devices (monitor or even
worse printer) cannot output the large acquired dynamic range.
In order to visualize HDR contents on these devices, an operator
that performs dynamic range compression is needed. That is, an
operation called “Tone-Mapping Operator” (TMO) is used. Vari-
ous tone-mapping operators have been developed in recent years
[19]. In general, there are two types of TMO: one is the global
(spatially-uniform) and the other is local (spatially-varying).

Global TMOs (G-TMOs) are non-linear surjective functions
that map an input HDR image to the output LDR (low dynamic
range) image for display. The function is typically parameterised
by simple image statistics drawn from the input (e.g. mean and
quantiles) and the dynamic range of the output display device.
Once the G-TMO function is defined, every pixel of the image
is mapped globally (independent from surrounding pixels in the
image). Global TMOs often work well and are also simple and
fast.The solid blue line in Figure 2. is an example of the G-TMO
mapping input log-scale values to an output linear display range.

However, by their very nature G-TMOs compress or expand
the input signal. If the slope of the G-TMO function is less than

1 then detail is compressed in the output images. Such compres-
sion often happens in highlight areas of an image and if it does
the output image appears flat. Often G-TMOs produce images
where contrast is lacking.

Spatially-varying TMOs (SV-TMOs) on the other hand,
take into account the spatial context when they adjust pixel inten-
sity values. In other word, the parameters of the non-linear func-
tion change at each pixel according to the local features extracted
from the neighboring pixels. Often this leads to improved local
contrast and images that are preferred by observers: simply, they
look more appealing. On the downside, SV-TMO algorithms
are far more complicated than global tone-curves. Moreover,
spatially-varying operators such as Ashikhmin’s [1] and Retinex
also often introduce strong halo artifacts in the area around high
contrast edges.

Our work in this paper is motivated by the idea of finding
the optimal global function that best approximates the spatially-
varying operator. We seek to build a processing workflow that
retains the simplicity of a G-TMO but keeps the preferred local
detail that is characteristic of SV-TMOs.

In [16], the tone-curves map input to output (for non opti-
mal) approximations to SV-TMOs are analysed statistically. To a
first approximation all curves studied could be modelled by a 5-
parameter sigmoid. based on this statistical analysis, they force
all G-TMOs to be modelled by this sigmoidal function. In [8], a
G-TMO is applied with some additional pre-and post-processing
that leads to local detail being preserved (a strategy we also use in
this paper). The G-TMO also has a constrained shape (a simple
brightness and gamma adjustment).

In our work we seek to find an optimal G-TMO. Specifi-
cally, given an input image and the output of an arbitrary SV-
TMO, we find the G-TMO that approximates the output in a
least-squares sense. We make no prior assumption about the
shape of the curve. We have found that our agnosticism is impor-
tant to achieving the best image outputs. indeed we found that
our G-TMOs are not, in general well modelled by a sigmoidal
curve or brightness+gamma adjustment.

We realised from the outset that mapping an input to an
output image using a G-TMO could be cast as a quadratic pro-
gramming (QP). Yet, QP is a rather general and computationally
expensive procedure. Thus, instead, we propose using the sim-
pler (and for this problem equivalent) Pool-Adjacent-Violaters-
algorithm (PAVA). PAVA optimally finds the monotonically in-
creasing function that maps scale inputs to scale outputs. We also
(very slightly) modify PAVA so the procedure runs very rapidly
and for the problem at hand (tone-mapping of images) also pro-
duces pleasing results (the default PAVA can result in a loss of
detail).

Figure 7 shows the outputs of SV-TMOs (left panels) and
our G-TMO approximation (center column). It is clear a G-TMO
can produce a very good approximation to a spatially varying
algorithm. The images in the rightmost column are the outputs
from the G-TMO after applying a detail recovery procedure.
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To quantify how well a G-TMO fits the output of a SV-TMO
we could look at the % RMSE difference. Typically this is a very
small percentage (less than 5%). But, actually, the outputs from
both operators are going to be viewed by a human observer. Thus
we ran a preference experiment to see whether observers judged
our G-TMO outputs to be equally acceptable as the SV-TMO
images. Our preference experiments (which evaluate 3 leading
SV-TMOs) found that our G-TMO produced equally preferred
results.

This is an encouraging result. Our G-TMO vehicle produces
its outputs at a fraction of the computational cost and provably
does not suffer from spatial artifacts.

Related works are considered in the next Section. Then, our
Optimal Global Tone-Mapping Operator is proposed. In order to
evaluate image preference, a psychophysical experiment is con-
ducted in Experiment. In the last section, we conclude the work.

Background
The goal of SV-TMO is to reduce the dynamic range of the

HDR images while preserving subtle details i.e. preserving local
contrast. However, it is well-known that SV-TMOs often result
in halo artifacts: intensity inversions near high contrast edges.
There is a trade-off between the dynamic range compression and
the image rendition: A strong, spatially-varying, dynamic com-
pression leads to halo artifacts while a weaker has no halos (or
they are much reduced) but the detail in the output can be more
muted (compared with the original). This tradeoff is discussed in
[24, 11, 18, 1, 5, 8] and in general reviews in [4, 19].

We would like to use a G-TMO but to ‘bring back’ any local
contrast detail that might be lost. One way to do this is to form
an input smoothed image using an edge-sensitive Bilateral Filter
[22].

Bilateral Filtering
Bilateral filtering adds photometric distance enforcement to

traditional filtering proximate pixels are averaged together in pro-
portion to their similarity to a central pixel. In cross bilteral fil-
tering [9, 17] the distance enforcement is according to a second
refernce image. Using cross-bilateral filtering we can decom-
pose an image into a low frequency component where edges are
preserved - called base layer - and a high frequency component
called detail layer defined to be the original minus the base. Base
and detail layers are calculated:

Lbase = BF(re f erence, target) (1)

Ldetail = Lin−Lbase (2)

where both reference and target images are in log-space.

The cross-bilateral filter uses the re f erence image to deter-
mine the photometric weighting where the actual smoothing is
carried out on the target image. If the reference is the same as
the target image the cross bilateral filter is the same as the con-
ventional bilateral filter.

In previous tone-mapping research [8], a bilateral filter was
used to decompose an HDR image into two-scale layers: an HDR
base-layer (because large edges are preserved) and a small-scale
LDR detail-layer. Then the base-layer is tone-mapped to LDR
using a G-TMO e.g. Tumblin et al. [23]. Finally, the detail is
added back onto the output image. Mathematically, this method

is summarised as:

Lbase = BF(Lin,Lin) (3)

Lbase′ = G−T MO(Lbase) (4)

Lout = Lbase′ +Ldetail (5)

Lin denotes a brightness image (e.g. average of R, G and B
channels) in logarithmic domain of the input HDR, Lbase′ is the
LDR tone-mapped image of the Lbase using a G-TMO. The final
step is to reconstruct the output image Lout by adding Ldetail to
the tone-mapped base layer Lbase′ .

Color Processing
Most TMOs are applied only to the brightness image. Full

colour output images are calculated according to [20].

Cout =

(
Cin

Lin

)
Lout (6)

C denotes one of the color channels (red, green, or blue).
Lin and Lout denote the luminance before and after tone-mapping,
respectively. All values are given in a linear domain (no gamma-
correction is applied).

Later [24] observed that the resulting images of their TMO
using Equation 6 are often over-saturated due to a stronger con-
trast compression. To solve this problem, they simply introduce a
color saturation factor s to the Equation 6. The color components
Cout of the tone-mapped image are now computed as:

Cout =

(
Cin

Lin

)s
Lout (7)

The Optimal Approximation
Our model of the optimal G-TMO approximation of a SV-

TMO consists of three components: (1) tone-curve optimisation
(the main contribution of this paper), (2) detail recovery, and (3)
color reconstruction. Figure 1 illustrates our processing work-
flow. The main tone-mapping processing is summarised as:

Lout = DR(G−TMO(Lin)) (8)

G−TMO() is the global tone-curve applied to the input im-
age, which can be either derived from a down-sampling or full-
size image. DR() denotes the detail recovery process (see be-
low). The color image can be then reconstructed using Equa-
tion 6. An additional unsharp masking step is available to tweak
preferred contrast (not necessary for the experiments we report
later).

Tone-curve Optimization
Let us now consider the function G-TMO. The optimal

global tone-curve applied to an image is not an arbitrary func-
tion. Rather, it should be monotonically increasing both to avoid
intensity inversions and to allow image manipulations to be un-
done. Almost all curve adjustments made to images (brighten-
ing, contrast changes and gamma) are monotonically increasing
functions.

Given an HDR image and its spatially-varying tone-mapped
LDR image, we want to find a 1-D surjective and monotonically
increasing function that best maps HDR to LDR. We point out
that we have a choice of how to encode the HDR brightness im-
age. Throughout this paper we will choose to represent our input
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Figure 1. Image processing of the optimal approximation operator.

data in the log domain. We do this because relative differences
are most meaningful to human observers (we have approximately
a log visual response) and, practically, most tone mappers take
the log of the input image as input.

Pool-Adjacent-Violators-Algorithm (PAVA)
To monotonically constrain the shape of the function (and

minimise squared residual error), Quadratic Programming (QP)
might be used. However, QP is a complex computational proce-
dure and is not something easily implementable in (say) a digital
camera. A simpler (but equally optimal) solution can be found
using the Pool-Adjacent-Violators-Algorithm (PAVA) [2]. To our
knowledge, this paper is the first application of PAVA to image
reproduction.

PAVA is a simple iterative algorithm for solving monotonic
(either increasing or decreasing) regression problems. It pools
values together until an optimal solution is found.

Let us assume we have a two-dimensional data {(Xi,Yi)}n
i=1

where Xi is in ascending order. We seek a monotonically increas-
ing function m̂() that minimizes

n

∑
i=1

(Yi− m̂(Xi))
2 (9)

subject to

m̂(X(1))≤ m̂(X(2))≤ ...≤ m̂(X(n)). (10)

The PAVA algorithm (originally presented in [14]), which opti-
mally solves this problem, works as follows:

1. Sort the data according to X (Y is reordered according to
the X) [Xi is in monotonically increasing order but Yi may
not be]{m̂(X(i))}n

i=1}.
2. Starting from the leftmost of the function Y(1) move to the

right and stop if the pair (Yi,Yi+1) violates the monotonicity
constraint we seek: Yi > Yi+1.

3. Pool Y(i) and the adjacent Y(i+1) together and replacing
them both by their average, Y ∗(i) =Y ∗(i+1) = (Y(i)+Y(i+1))/2.

4. Next check that Y(i−1) ≤ Y ∗i . If not, pool
{Y(i−1),Y(i),Y(i+1)} into one average. Continue to
pool to the left unless the monotonicity requirement is
satisfied.

5. Proceed to the right and keep repeating from step 2 until an
monotonically increasing solution is derived.

By the way the algorithm works the computational com-
plexity of PAVA is O(n2) in the worst case (very expensive if
every pixel has a unique intensity!). The worst case for PAVA
happens when, in step 4, we have to search back to our first data
point. In practice (for our application) the worst case is never
encountered (if a G-TMO is a good approximation, the expected
complexity of PAVA can be shown to low).

Reducing the Complexity of PAVA with Fixed Quantiza-
tion Levels

Suppose we have n + 1 quantization levels of X :
qn,qn−1, · · · ,0. If the minimum log-value is M then let qi =
i
n M. For each quantization level there may be many different
output values. But, the complexity of PAVA is bounded by the n
quantization levels (say 32, compared with the millions of pixels
in the original image). We calculate PAVA only for Xi = qi and
the corresponding output Y (a single quantization level can have
many different output values). Of course our original HDR im-
age is not quantized thus we must calculate the outputs by linear
interpolation. For an arbitrary X (a brightness in the input HDR
image whose brightness is between quantile levels u and u+1) we
calculate the position of this brightness between the appropriate
quantization levels:

α =
X−qu

qu+1−qu
(11)

We assume that the output Y is the same linear combination of
the outputs for these quantization levels:

m̂(X) = (1−α)m̂(qu)+αm̂(qu+1) (12)

Smoothed PAVA
One negative characteristic of PAVA is that it sensitive to

outliers. In the presence of outliers, PAVA can produce long flat
levels (step function). Such tone-curves (though least-squares
optimal) will not lead to good looking images. The visual mean-
ing of the flat part of a tone-curve is that a range of input values
are all mapped to the same output values (with a potential loss
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of detail as a result). To avoid this flattening behavior, we sim-
ply smooth the PAVA solution which mathematically equivalent
to finding an optimal smooth curve as part of the general opti-
mization [12]. But, post-smoothing has the advantage that it is
carried out on a small number of regression points (e.g. for the 32
quantization levels) which leads to much faster processing than
smoothing the set of actual mapping points. The robust loess
estimation procedure is used to smooth our data.

An example of PAVA and its robust smoothed version is
shown in Figure 2. As can be seen, there is a flat area occurred
in the highlight of the original PAVA function which is smoothed
out.

PAVA
PAVAs

Figure 2. Tone-curves resulted from PAVA and its robust smoothed version

(PAVAs).

Even though the basic PAVA solution is optimal in terms
of Root Mean Square Error (RMSE), flat regions of tone-curve
can produce poor image outputs. Significantly, we have found
that the smoothed PAVA curve has almost the same RMSE. For
the data fit shown in Figure 2, the optimal PAVA output captures
95.02% of the spatially varying TMOs output (RMSE of 0.0498)
whereas the smoothed version (PAVAs) is almost as good 94.94%
(RMSE of 0.0506). Similar smoothing results were found for
all images we tested. Smoothed PAVA produces visually more
pleasing output at the cost of a very small decrement in the data
fit.

Discussion
Tone-curve manipulations tend to stretch contrast in some

image areas and compress in others. When the derivative of the
tone curve is less than 1 detail is being compressed and when it is
greater than 1 there is an increase in contrast. Thus, while tone-
mapped images generate by Smoothed PAVA are often similar
to the spatially-varying outputs they can look very flat (typically
in the highlight region area, the best global tone-curve has a <1
derivative). Simple unsharp masking (as shown in the workflow
of Figure 1) can often (very slightly) ameliorate this problem.

However, unsharp masking does not always work.
Spatially-varying TMOs such as Retinex manipulate images in
a very local manner. Indeed, one of the problems of Retinex is
that it can introduce artifacts such as halo around high contrast
edges. Although, often problematic the processes that make ha-
los also add a contrast boost (a ‘punch’) to local areas of images

Figure 3. An example of a poor fit of our tone-curve approximation. Left,

the reference image resulted from Retinex has higher local contrast com-

pare to our mapping result on the right.

Reinhard PAVA PAVA+detail

Figure 4. Details recovered from the cross-bilateral of the proposed oper-

ator. Images were cropped from images shown in middle row of Figure 7.

which is often preferred results. Of course, the more locally an
image is processed, the less well a global tone-curve can approx-
imate the outputs. Figure 3 gives an example of this poor visual
fit. Arguably the Retinex output on the left has an almost ‘hyper’
realism. But, the G-TMO output on the right looks unnaturally
flat.

Thus, in common, with previous works on G-TMOs, we
must recover the detail that is missing in the G-TMO reproduc-
tion.

Detail Recovery
In [8] the detail is recovered using Equations (3) through

(5). Here we adopt a slightly different approach using the cross
bilateral filter. Denoting the ouptut of our PAVA method as
Lapprox, the final output of our tone-curve algorithm is:

Lout = Lin+BF(Lin,Lapprox−Lin) (13)

The advantage of (13) is that the BF() is applied only to the
gain. Equation (13) is a concise summary of the exact compu-
tation needed to bring back the detail. However, mathematically
the approaches of (13) and (1) through (5) are similar). They are
not precisely the same as Lapprox is calculated given the origi-
nal input image (not the input base layer). For our purposes, we
found 13 gave slightly better results. Figure 4 gives an example
of how detail recovery process can bring back the detail that is
missing in the PAVA process.

Experiment
To test image preference of the optimal approximation op-

erator against spatially-varying TMOs, a paired comparison psy-
chophysical experiment [10] was conducted. The purpose of this
experiment was to compare all the test SV-TMO images and
to ensure that in general the G-TMO images derived from the
smooth-PAVA optimization are comparable.

Five HDR images were used in our experiments: Figure 5
shows the image dataset. Tone-mapped images used in the exper-
iment were generated by applying the optimal approximation op-
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erator to tone-mapped images of 3 well-known spatially-varying
TMOs. Table 1 lists TMOs that have been used in the experiment
(note the labels we use to index the results in Table 2 and Figure
6). To avoid unfaithful implementation and bias from parameter
selection problems, we use the images available from a previous
study [7].

There are 6 tone-mapped images per HDR image (3 ref-
erence tone-mapped images, and 3 created using smooth-PAVA
in the context of the processing workflow shown in Figure 1).
Thus, there are 30 tone-mapped images in total. These images
were evaluated by 21 observers (9 males and 12 females) with
normal color vision, naive to the goal of the experiment. Images
were viewed under controlled experimental conditions [15].

There were a total of 75 pairwise comparisons in the experi-
ment (5 images * 15 pairs of algorithms). Participants were asked
to make judgements of the TMOs based on overall appearance.
For each pair, participants were instructed to observe the two
tone-mapped images and select the one they preferred. Images
were shown randomly on the left or the right of the screen. All
algorithms were shown roughly an equal number times left and
right. The whole procedure per participant took approximately
8-10 minutes. In order to evaluate the results, preference scores
are generated using Thurstone’s Law of Comparative Judgement
Case V [21].

Figure 5. 5 well-known images used in the experiment. From left to right

AtriumMorning, AtriumNight, HotelRoom, Memorial, and NapaValley. Image

courtesy of Frédéric Drago, Paul Debevec, Simon Crone, and Spheron AG.

Algorithm parameters
For PAVA, the number of quantization points that we use is

32. For bilateral filter parameters, we set the spatial closeness
(σs) to 2% of the image size and the photometric similarity (σr)
to 0.6log units since these two values performed consistently well
for all test images. All processing is carried out in the brightness
domain. The color output is created according to Equation 6.

Results and Discussions
The average preference scores of 5 test scenes from the 21

subjects was given in Figure 6 (the x-axis shows the operators.
The actual scores are given in Table 2. The numbers in Table 2
are the number of times a particular algorithms is preferred. The
last two columns compared the pooled algorithm performance:
SV-TMO vs G-TMO. Using statistical assumptions (Thurstone’s
law of comparative judgement Case V) we can turn these raw

preference numbers into a preference score with confidence in-
tervals. See [13] for a full discussion of how this is done.

In Figure 6, The 95% confidence interval (error bars) are
shown in a normalised preference score interval. The y-axis here
(preference score) can be interpreted as a z-score: if one operator
were strongly preferred it could, in theory have a score of 2 and
if an operator was strongly unpreferred its normalised preference
could be as low as -2. In cases where algorithms do not deliver
strong preference, the preference scores tend to cluster around 0
on this normalised scale. If error bars do not overlap then one
algorithm is better than another at the 95% confidence interval.

The results show that on average among six TMOs, TMO P
(Reinhard’s photographic tone reproduction operator) was most
preferred but that the G-TMO P̂ produced images which were
not significantly different (in terms of preference). We can also
clearly see that A (Ashikhmin) has the lowest score whereas its
global approximating version Â have a significant higher score
(the score difference exceeds the confidence interval) and in fact
ranked the third overall. This indicates that TMO which generate
too much detail may be judged poorer than its global approxi-
mating version.

The pooled average scores for each category (S for spatially-
varying and G for the proposed global approximation) are given
on the right of the Figure. Since the two scores fall in to the
same interval scale, it is reasonably to conclude that in general,
the perceived quality of the optimal approximation operator is
similar to its spatially-varying operators.

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

A P R A P R S G

Figure 6. Overall preference scores of 6 different TMOs (6 scores on the

left). The average score of spatially-varying TMOs and the average score

of the proposed operator are shown on the right.

A P R Â P̂ R̂ S G
213 315 267 291 273 216 795 780

The number of times each TMO is preferred over the others.

Conclusions
We demonstrate that many spatially varying TMOs can be

visually approximated by the optimal global tone-curve approx-
imation so long as care is taken to preserve local detail. A psy-
chophysical experiment validates our method. Our experiment
demonstrates that for three of the most widely used spatially-
varying TMOs, their optimal global tone-curve approximation
generates images that were equally preferred. This is a signifi-
cant result as our global operator does not suffer from spatial ar-
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Name Label Category
A Tone Mapping Algorithm for High Contrast Images [1] A
Photographic Tone Reproduction [18] P S
Retinex adapted to tone-mapping [6] R
Optimal Global Approximation to A Â
Optimal Global Approximation to P P̂ G
Optimal Global Approximation to R R̂

Tone mapping operators used in the experiment together with their labels and categories used in the paper. For the category, S
stands for spatially-varying TMOs, G stands for the optimal global approximation operator.
tifacts (such as halos) and can be implemented to run extremely
rapidly. indeed the global tone-curve itself can be learned using
only a small input thumbnail.
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Figure 7. Results of our approximation to the three tone-mapped images that we test. Left column, the reference tone-mapped image. Our approximation

output before and after the detail recovery process are given in middle left and middle right columns, respectively. Right column, approximated tone-curve

(blue) and the scatter plot showing the correlation between each pixel of the LDR and HDR brightness values. Note that: Although the regression is done in

log-log space, we found that it is more intuitive to visualize it in log-linear space.
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