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Abstract
“Are a priori metrics in colorimetry meaningful?” is a ques-

tion that is rarely asked. Yet the choice of metric in the form of
an inner product is of crucial importance in basic colorimetry.
Is there an a priori unique choice? The answer is no. One needs
to opt for some choice of inner product on rational grounds that
may differ from case to case. I discuss possible alternatives.

Introduction
Assuming Graßmann’s Laws[1], “color space” is a linear

space, or, more precisely, a convex cone in a three-dimensional
real vector space. Elements of the space are “colors”, which are
equivalent classes of radiant powerspectra called “metamers”,
a term borrowed from chemistry by Ostwald[2]. The space of
spectra is a convex cone in an infinitely dimensional linear topo-
logical space. It is a Hausdorff space, though not a Hilbert space,
for there is no natural inner product. This motivates my title: it is
common enough to treat the space of spectra as a Hilbert space.
Is there an a priori reason why this might make sense? If not,
what are the consequences, and are there reasonable alternatives?

Radiant power spectra
Since Newton[3] radiant beams are usually described in

terms of a spectral basis. One specifies radiant power density
on wavelength basis. It is of some importance to appreciate that
this is just one of of infinitely many, mutually equivalent bases.
Thus it is strictly nonsense to say (as modern textbooks still do)
that general beams of radiation are “composed of monochromatic
components”. This is about as meaningful as to say that four is
“two plus two” as opposed to “one plus three”. But for a state-
ment to “not be false” is not the same as for it to be “right”. Of
the infinitely many possible bases at least some have an obvious
relevance, for instance you might specify photon number density
on photon energy basis.

This is all trivial, of course. The problem (as signaled in the
title) is that it is common practice to implicitly introduce an inner
product, namely the “obvious” (Cartesian) inner product in the
radiant power on wavelength basis representation. This goes usu-
ally unnoticed, although there are infinitely many choices avail-
able for an inner product. One merely needs a symmetric func-
tion that is positive definite and linear in the first argument. With
such a range of choices one surely needs a reason for a choice!
It makes a difference.

Why is this rarely noticed? The reason is that one appar-
ently believes that matrices can be transposed with perfect free-
dom. They can’t. To transpose a matrix is to switch to the adjoint
of a linear map. In order to define a transpose one needs the dual
vector space. In order to define a dual vector space one needs an
inner product.

Many standard methods in colorimetry implicitly assume
the existence of the dual space and the adjoint. A key example
is Cohen’s[4] “Matrix R”. This is a tool with powerful applica-
tions, so its popularity is easy to understand. However, blindly
computing Cohen’s Matrix R involves the (to many apparently
implicit) choice of an inner product. Perhaps unfortunately, the

results depend on this choice. The “fundamental” and “black”
components of a generic beam will turn out to be different for
different choices of the inner product.

Of course, this means that there is little “fundamental” about
fundamental spectra. This implies that the choice of metric (or
inner product) is of crucial importance.

The quest for a canonical basis
The “standard basis” for the space of radiant spectra is New-

ton’s spectrum, understood as radiant power density on wave-
length basis. Maxwell[5] was the first to “gauge the spectrum”
in the mid nineteenth century, that is to say, to measure a projec-
tion operator into three-dimensional “color space”. This involves
the essentially arbitrary choice of three fiducial spectra as a basis.
The standard CIE color matching functions define exactly such a
projection operator. The color coordinates are simply the weights
by which the fiducial spectra are added. A picture of color space
is obtained by plotting these weights in terms of a Cartesian sys-
tem. Such a picture is meaningful if you view it modulo arbitrary
linear transformations. Thus, it is not meaningful to compare
lengths in different directions, nor to consider angles. Since peo-
ple tend to forget this (it is not “natural” to view a picture modulo
arbitrary linear deformations) it tends to be misleading.

This is where Cohen’s Matrix R comes to the rescue. It is
essentially a singular values decomposition, which lets you con-
struct a nice orthonormal basis of “fundamental space”. Now
the picture of color space becomes a “true” picture in which Eu-
clidean measures are meaningful.

However, because the result is dependent upon the choice
of inner product, it should be understood modulo any change of
inner product. This means that you can pick any three (indepen-
dent, and not in the kernel of the projection) radiant spectra and
construct an inner product that makes them into an orthonormal
basis. Thus the progress is actually nil. If virtually any three-
dimensional subspace can be promoted to “fundamental” space,
there is little “fundamental” about it!

The only true invariant is the kernel of the projection. It is
well defined in the absence of an inner product.

A priori choice of metric on a rational basis
Is it possible to make a choice (preferably a unique choice)

on a rational basis? The reason should be found in physics, since
we are dealing with the space of radiant beams.

Perhaps one could frame a story that would make Cohen’s
implicit choice sound like a “natural” choice. No doubt one could
frame other stories that would yield a different choice though. It
depends upon the application. If the detector is of the thermal
kind radiant power is important, if it is a photon counter photon
number density would be preferable. In most applications pho-
ton energy would be more important than wavelength in vacuum.
And so forth.

Although certainly not ruled out, so far I have seen no par-
ticular choice that would surely convince everybody.
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Alternatives to the choice of a metric
Since the a priori choice of metric on rational grounds is

not an easy matter, one might look for alternatives. These need
not necessarily be sought for in physics. For instance, because
you may freely choose fundamental space, you might select three
fiducial beams and promote them to the preferred orthonormal
basis of fundamental space. Of course one would need a con-
vincing story to “sell” such a choice.

Example of a rational choice
One way to arrive at a unique rational choice is as the opti-

mum of some desirable property. The arbitrariness is then shifted
to the choice of desirable property. It is often easier to construct
a compelling story for that.

In the case of colorimetry per se it is not obvious how to
proceed. The case of the (formal) object colors is easier because
one has strong non-linear constraints there. A (formal) object
color is defined as a radiant beam whose radiant spectral power
density is less than or equal to the radiant spectral power density
of some fiducial beam denoted the “illuminant”. In the space of
radiant beams these colors are confined to a hyper-cuboid with
edge lengths given by the radiant spectral power density of the
illuminant. The projection in color space is a convex body (the
“color solid”) with central symmetry (these properties are inher-
ited from the hypercuboid), that is smooth except for two ridges
that connect two conical singular points. One conical point is at
the origin (the tangent cone being the spectrum cone), the other
at the “white point”, that is the color of the illuminant. These
properties are geometrically obvious, they were formally proven
by Schrödinger[6] in the nineteentwenties.

Of course the white point depends upon the illuminant.
Even for the same white point the shape of the color solid
depends upon the spectrum of the illuminant, thus beams
metameric to the illuminant yield distinct color solids.

A basis of object colors is just a choice of three points within
the color solid. All colors that may be produced by combining
the basis colors with weight between zero and one lie in a paral-
lelepiped. In order to “capture” as many colors as possible, this
parallelepiped should exhaust as much of the volume of the color
solid as possible. Here is an optimum principle. How useful is
it?

There are a number of issues of relevance here. One is that
the choice of illuminant is still arbitrary. Although this may be
granted, there is a good story (involving the evolution of the hu-
man species) to tell that would imply “natural daylight”. This
limits the choice tremendously. Your favorite natural daylight
spectrum will do fine. The other issue involves the nature of the
optimum.

It is geometrically obvious that the major diagonal of the
parallelepiped should be the segment that connects the origin to
the white point, and that the basis colors should be on the bound-
ary of the color solid. More specifically, intuitively the optimum
is reached when the tangent plane at one basis color is parallel to
the plane spanned by the other two. The nature of points on the
boundary of the color solid is well known: the radiant spectral
power density equals that of the illuminant or is zero, with no
more than two transitions throughout the spectrum. This implies
that the basis colors are derived as “parts of the illuminant” (a
notion suggested by Schopenhauer[7] in the first half of the nine-
teenth century), obtained by cutting the spectrum at two or three
spectral locations.

The partition has to be found numerically, an exhaustive
search yields a single solution with two spectral cuts. Thus the

basis colors are short, medium and long, mutually abutting wave-
length regions. I will (this is merely colorful language, not an
attempt to sneak in qualia) refer to these as the blue, green and
red parts of the illuminant.

Thus we arrive at a rational choice. It involves the choice
of illuminant, defendable on the basis of ecological and evolu-
tionary arguments, and the notion that the fundamental colors
should maximize the object color gamut. As a final step the par-
allelepiped is promoted to the unit cube (“RGB cube”), thereby
fixing the metric.

How useful is the example?
The example turns out to be very useful, thus bearing out

Schopenhauer’s hunch. The RGB cube exhausts most of the
color solid and may be substituted for it in many applications.
Conversely, the color solid is very similar to a slightly inflated
unit cube in this metric. For instance, the (of course periodic) se-
quence R–Y (= R+G)–G–C (= G+B)–B–M (= B+R) appears as
a (non-planar) hexagon with almost identical edge lengths, thus
yielding a virtually perfect “color circle”, and so forth.

For applications in computer graphics and imaging this may
prove to be the representation of choice. It is transparent to the
intuition, and leads to simple algorithms.

Conclusion
Are a priori metrics in colorimetry meaningful? Yes, they

can be, although they usually aren’t, because introduced implic-
itly, without rational motivation.

Acknowledgments
This work was supported by the Methusalem program

by the Flemish Government (METH/08/02), awarded to Johan
Wagemans.

References
[1] Hermann Günther Graßmann, Zur Theorie der Farbenmischung,

Poggendorff’s Annalen der Physik und Chemie, Bd. 89(1), S. 69–
84 (1853).

[2] Wilhelm Ostwald (Hrsg.), Die Farbenlehre. In fünf Büchern. Verlag
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