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Abstract 
This study investigated how to improve the accuracy of 

colour characterisation for a three-colour laser scanner, 

implemented by a lookup table (LUT) with interpolation. The 

transfer function was trained on a huge number of real and 

synthetic reflectance spectra, refined through statistical 

analysis. The lookup table enabled a ‘baseline’ matrix fitting to 

be enhanced through local deformations of 3D colour space to 

give optimal colorimetric performance. 

Background 
The signals produced by digital image capture devices, 

usually encoded at each pixel position as red, green and blue 

(R,G,B), are device dependent. The relationship between the 

object’s reflectance spectrum and each signal depends on the 

spectral sensitivity of the corresponding channel of the device. 

In a digital scanner, for example, this includes the integrated 

product of the power at each wavelength of the inbuilt light 

source, the reflectance of the surface, the transmittance of the 

colour filter, and the sensitivity of the sensor. 

Input device characterisation is the process of establishing 

the relationship between the colour of the original object and 

signals generated by the device (Fig. 1). The former is 

expressed by device-independent values related to human 

vision, such as CIE L*a*b*, and the latter by device-dependent 

R,G,B values. Simplistically, if the signal can be represented as 

a function of the colour:  Signal  = f (Colour) and if the function 

is invertible (i.e. continuous and single-valued) then the colour 

may be recovered as the inverse function: Colour = f -1(Signal). 

 

 

Figure 1. ‘Black box’ model of input device behaviour 

Because there is generally no analytical function available, 

an approximation is frequently used, by fitting the data with a 

low-order polynomial through a regression procedure. Hong et 

al [1] tested six different orders of polynomial and found the 

best overall performance (i.e. lowest average error) with an 11-

term polynomial, including a cubic term for RGB, over a set of 

168 test samples. They also investigated the number of training 

samples needed, and concluded that 60 samples were sufficient. 

The problem is that the transfer function f should be 

optimised over all possible reflectance spectra that the device 

could encounter. If the usage will always be limited to a 

specific population of materials or objects, for example 

photographic prints or paints or textiles made with known dyes, 

it may be sufficient to take a selection of test samples from that 

population. But for a digital camera or general purpose scanner 

that could be used for any material it is not sufficient to train it 

on a small number of samples with a limited range of 

reflectance spectra, e.g. by using a standard test target such as 

the GretagMacbeth DC chart, and then expect the transfer 

function to predict accurately the device performance on all 

possible spectra that might be encountered in practice. 

Characterisation of colour laser scanner 
This study aimed to characterise a large colour laser 

scanner (Fig. 2), used at UCL for 3D digitisation of heritage 

objects from Museum collections, such as Egyptian tablets. 

Because it employs three lasers to sample the object surface at 

three precise wavelengths (473, 532 and 635 nm), the colour 

response is highly metameric [2]. Its signals are much more 

sensitive to the form of the reflectance spectrum than a normal 

scanner or digital camera or the human eye, for which the 

channel spectral sensitivities are quite broad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Arius 3D colour laser scanner at UCL. 

The objective was to use sets of reflectance spectra to 

determine the inverse transfer function f -1, to transform the 

R,G,B signals from the scanner sensor directly into CIELAB 

colorimetric values. The reference tristimulus values X,Y,Z 

were calculated by multiplying the spectral reflectance 

distribution of each sample by the CIE 2° Standard Observer 

and the spectral power distribution of the D65 illuminant (Fig. 

3). Knowing the spectral sensitivity of the scanner (in this case 

three delta functions) enabled the scanner R,G,B responses to 

be predicted, by sampling the reflectance spectrum at each of 

the three specific wavelengths. The coefficients of a 3x3 matrix 

were calculated by a regression procedure, enabling the 

corresponding X’,Y’,Z’ to be predicted for each R,G,B. From 

the two sets of X,Y,Z the CIE L*a*b* values were calculated 

using the tristimulus values of D65 as the reference white. 

 

 

 

 

 

 

 

 

 

Figure 3. Procedure for calculating matrix coefficients and testing the 

accuracy of prediction. 

A large dataset of 8,714 reflectance spectra was collated 

from readily available spectral reflectance measurement sets 

(Table 1) over the wavelength range 380 to 780 nm, and 
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interpolated to 1 nm intervals by the Matlab function interp1 

with the cubic spline option. Where the original wavelength 

range was smaller, for example with no data provided below 

400 nm or above 700 nm, the reflectance was set to zero. As a 

baseline for the transform, a regression procedure was 

employed to find coefficients cij that would minimise the error 

in the tristimulus X,Y,Z domain over the full dataset: 

 

 

where Ri,Gi,Bi are normalised signal values from the 

detectors in laser scanner for i = 1..n and n = 8174. The system 

of equations can be written more compactly in matrix form as: 

 

where the nx1 response vector X = [ X1 … Xn ] T  (and 

similar for Y and Z), the nx1 signal vector R =  [ R1… Rn ] (and 

similar for G and B) and the 3x3 matrix M = [ cij ] contains the 

coefficients. For the collated dataset of real samples the 

resulting matrix was: 

 

 

The performance of this simple linear fit of laser R,G,B to 

tristimulus X,Y,Z was evaluated by converting both the reference 

colour and the estimated colour of each sample to L*a*b* and 

calculating the colour difference as ∆E*ab (Fig. 3). 

 

 

 

 

 

 

 

Figure 4. Slopes (first derivatives) of 8,714 real reflectance spectra, with 

mean (red). The spikes at 400, 700 and 730 nm are artifacts arising from 

discontinuities in some datasets that were undefined outside this range. 

Synthetic spectra 
To simulate the widest possible range of reflectance 

spectra that might be encountered by the scanner, a set of 

synthetic spectra was generated. These were constrained to be 

continuous, single-valued functions of wavelength at 1 nm

intervals over the range 380 to 780 nm, with a maximum slope 

first derivative) not exceeding ±0.024 nm-1. The latter limit was 

derived from analysis of the collated spectra (Fig. 4), which 

showed that the first derivatives fall largely within the range 

from -0.01 to +0.02 nm-1. These values can be related to the 

colour gamut [3]. 

                         

 

 

 

 

 

 

 

 

                    

 

 

 

 

Figure 5. Four generating functions for synthetic spectra: 

(top left) Gaussian; (top right) logistic; (bottom left) sine; (bottom right) ramp. 

The synthetic reflectance spectra were based on eight 

generating functions: Gaussian, inverted Gaussian, logistic, 

inverted logistic, sine, upward ramp, downward ramp, sum of 

three Gaussians, and piecewise linear (Fig. 5). The central 

wavelength λ0 and width parameter k were randomised to 

produce a family of 100,000 curves for each function, giving 

800,000 synthetic spectra in total. The central wavelengths 

ranged from 400 to 700 nm, and the full range of reflectance 

factors was utilised, from 0 to 1. Limits were set on the slope 

and width parameters to restrict the maximum slope of the 

curves in all cases within the range ±0.024 per 1 nm interval. 

L*a*b* coordinates of all real and synthetic spectra were 

calculated for the D65 illuminant and plotted in 3D (Fig. 6). 

The real samples fit within cuboidal bounds of approximately 

10 < L* < 95 and  -60 < a* < +70 and -55 < b* < +105. The 

synthetic spectra, however, fill a much larger volume of 0 < L* 

< 100 and -130 < a* < +135 and -125 < b* < +140. They are 

therefore much more demanding as a test of the robustness of 

the device characterisation. 

Table 1. Collection of 8,714 reflectance spectra assembled from various sources. 

Spectral reflectance 
dataset 

Source Surface 
type 

Instrument Geometry Wavelength 
interval (nm) 

Number of 
samples 

NCS atlas NCS Matte Gretag Spectrolino 45-0 10 1950 

NCS atlas NCS Matte Macbeth ColorEye 7000 d-8 10 1950 

Munsell atlas Joensuu Gloss Perkin-Elmer lambda 18 45-0 1 1600 

Munsell atlas Joensuu Matte Perkin-Elmer lambda 9 d-8 1 1269 

Chinese NCS Shanghai Textiles Datacolor 600 d-8 10 899 

Natural materials Derby Leaves Macbeth ColorEye 7000A d-8 10 494 

Natural materials Joensuu Plants Acousto-Optic Tunable Filter 45-0 5 218 

GretagMacbeth DC chart LCC Matte X-Rite i1Pro 45-0 10 180 

Berns-Taplin acrylic paints RIT Paints X-Rite i1Pro 45-0 10 100 

Traditional art pigments Natl. Gallery Paints Monolight 45-0 2 64 
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Figure 6. Colours of 8,714 real (coloured) and 20,000 synthetic (grey) 

spectra in CIELAB space for D65 in three cross-sections: (top) a*-b* plane; 

(centre) L*-a* plane; (bottom) L*-b* plane. 

Colour transformation by lookup table 
The transformation from object colour to device RGB is 

conveniently implemented by a lookup table (LUT), with less 

computation and faster speed for real-time applications. The 

contents of the LUT can be pre-computed and also edited to 

include media-dependent corrections or operator preferences. 

The first use of LUTs was in digital drum scanners for the 

digitising of transparency photographs for graphic arts and 

colour printing [4]. The logarithm of intensity of light in red, 

green and blue (R,G,B) channels transmitted through each point 

of the transparency was digitised to give density values 

DR,DG,DB. These were used to address the correct cell of the 

LUT in which were stored corresponding values of print density 

or ink %dot in cyan, magenta, yellow and black (C,M,Y,K) [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Signal processing by LUT in the Crosfield scanner, c.1975 

For good quality picture reproduction, at least eight bits per 

channel are required, preferably 10 bits in a logarithmic density 

domain or 12+ bits in a linear domain. To implement this as a 

LUT with a separate cell for every possible combination of input 

values would require a prohibitively large amount of memory. 

For example the arrangement in Fig. 7 would need 224 = 16 

million cells with four output bytes per cell (64 Mbyte) for 8-bit 

input, and 230 = 1 billion cells (4 Gbyte) for 10-bit input. The 

solution has been to separate the input signals into two parts: the 

most significant bits (msb) address a smaller LUT, and the least 

significant bits (lsb) are used to interpolate values from all 

surrounding points in the 

lattice. With a 4:4 

allocation of 8 input bits, 

the LUT requires only 212 = 

4096 cells (16 Kbyte). The 

simplest interpolation 

scheme is trilinear amongst 

all eight corner points of 

the cubelet within which 

the input value falls (Fig. 

8), but other schemes are 

widely used [6]. 

To implement the 

colour transformation for the colour laser scanner, a lookup table 

with 33x33x33 = 35,937 cells was constructed, addressed by the 

5 msb of each of the R,G,B laser signals. The 7 lsb of the 12-bit 

linear input signals were used to interpolate amongst the eight 

corners points of the cubelet. The cells of the cube were initially 

loaded with the L*a*b* values predicted by the matrix in Eq. 3 

and standard conversion from X,Y,Z. This is similar to the 

arrangement used by Hung for the colorimetric calibration of 

imaging devices [7]. 

Figure 8. Trilinear interpolation 
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Figure 9. Distribution of all samples in the LUT in the RGB address space. 

The grey points represent 20,000 synthetic spectra. 

Plotting all samples within the normalised cube (Fig. 9) 

reveals that the real samples fill only a limited volume around 

the grey axis up the long diagonal from the black corner to the 

white corner. The coordinates corresponding to the synthetic 

samples, while still clustered around the grey axis, are spread 

much more widely and fill all of the cube volume although they 

are sparse in some regions. This suggests a novel way of 

improving the accuracy of the lookup table, by loading it with 

the actual L*a*b* values corresponding to the spectra, instead of 

the approximate values predicted by the regression formula. The 

808,714 spectra available, if they were uniformly spread 

throughout the RGB cube address space, should yield an average 

of over 22 values in each of the 35,937 cells. In fact the 

distribution turns out to be very uneven where some cells, 

especially dark colours near neutral, have hundreds of entries 

whereas others have none. For conservation of memory, the 

maximum number of entries in each cell was limited to 101, 

commencing with the real samples. Fig. 10 shows the scatter in 

such a distribution of L*a*b* values. 

The median was taken of all values accumulated in each 

cell. Because the first entry in each cell is the predicted value 

(from the regression matrix), there is always guaranteed to be at 

least one entry, even in sparse regions with no corresponding 

values from spectra. Fig. 11 shows the resulting set of 33 values 

of L*, a*, b* along one row of changing R and constant G and B. 

In this case the predicted value matches the actual value closely 

for L*, but there are significant departures for a* and b*. In 

order to achieve better homogeneity of the function along all 

three dimensions of the lookup table, the data was filtered at 

every internal point by taking the median of the 5x5x5 

surrounding cells. 

This method proved to be very effective as a way of 

removing isolated values and reducing noise (Fig. 12). The 

resulting transfer function can be visualised effectively in 3D for 

planes through the LUT where one of the input values is held 

constant (Fig. 13). The local deformations in the 3D function 

loaded in the LUT enable the colour transformation to adapt to 

the most probable signal produced for each spectrum, far more 

sensitively than any polynomial fitted over the whole dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Distribution of L*a*b* values in one cube cell, all with the same 

R,G,B index values. The first entry (open circle) is the predicted value. 

 

 

 

 

 

 

 

 

 

Figure 11. Values along one row of cube after taking the median in each 

cell (dots). The open circles are the values predicted by the matrix. 

 

 

 

 

 

 

 

 

 

Figure 12. Values along one row of cube after applying the 5x5x5 median 

filter. The open circles are values predicted by the matrix, dots are 

unfiltered values and lines are filtered values. 
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Figure 13. Values of L*, a* and b* values for planes of constant R=33. The lower surface in each case shows the values predicted by the baseline matrix 

transform (displaced downwards for visualisation) and the upper surface shows the local deformations resulting from adaptation to the spectra.

Evaluation 
Testing the performance of the simple 3x3 matrix M in Eq. 

(3) with the set of 8,714 real spectra gave the distribution shown 

in magenta in Fig. 14, with a median error ∆E*ab = 3.38 (Table 

2). The same matrix applied to the full set of 808,714 real and 

synthetic spectra resulted in a median error of 5.00 but a much 

longer tail in the distribution, with the 95th percentile increasing 

from 14.81 to 33.15. The maximum error rose to over 197, 

indicating that for a few spectra the monochromatic sampling by 

the laser scanner produces huge colorimetric errors. 

The fitting procedure of Fig. 3 and Eq. (2) was repeated for 

the full dataset of 808,714 real and synthetic samples. The 

resulting matrix was: 

 

 

Comparison of this matrix with that fitted to the real 

samples only (Eq. 3) indicates close agreement in all 

coefficients. Testing the performance of this matrix on the real 

samples (Fig. 10) shows that it has a slightly worse performance 

(median error of 3.66 instead of 3.38), but an improved 

performance for the full dataset of combined real and synthetic 

samples (median error of 4.89 instead of 5.00), as expected. 

Small further improvements to the performance of the 

regression could be made by introducing additional terms (for 

example by second- or third-order polynomials), but these are 

not justified by the nature of the linear system. The errors arise 

not from non-linearities but from the monochromatic sampling 

of the spectra which cannot satisfy the Luther-Ives condition. 

Table 2. Performance of matrix and LUT on spectral datasets. 

Method #samples 

fitted to 

#samples 

tested on 

Med Mean 95
th

 

%ile 

Max 

Matrix 8174 8174 3.38 4.98 14.81 36.34 

Matrix 8714 808714 5.00 9.87 33.15 197.22 

Matrix 808714 8174 3.66 5.22 15.40 40.65 

Matrix 808714 808174 4.89 9.67 33.55 180.69 

LUT 808174 8174 3.38 4.74 13.22 26.79 

LUT 808174 100000 4.61 8.34 28.80 175.18 

Testing the performance of the lookup table method on the 

8,174 real samples gave the error distribution shown in red in 

Fig. 14. Overall the LUT performed better on the set of spectra 

of real samples than a 3x3 matrix fitted to those samples, with 

the same median error of 3.38 but a reduced 95th percentile value 

of 13.22. A similar improvement was achieved when testing the 

LUT on a large set of 100,000 spectra randomly sampled from 

the full set. Table 3 shows that the errors for the LUT are lower 

by every measure for both the real samples and the full dataset. 

The LUT method reduces errors by maximising the probability 

that output values correspond to the spectra most likely to be 

encountered in practice. 

 

 

 

 

 

 

 

 

 

Figure 14. Distribution of colorimetric errors for 8,714 spectra of real 

samples for: (magenta) 3x3 matrix fitted to real samples; (blue) 3x3 matrix 

fitted to all samples; (red) LUT fitted to all samples. 

Plotting the spectra of the 100 samples that produced the 

largest colorimetric errors (Fig. 15) shows the common 

characteristic of large changes in reflectance between the laser 

wavelengths. In the majority of spectra the reflectance factors, 

and hence the responses in the R,G,B channels of the scanner, 

would be well correlated. But for these spectra, the transition 

from a very small G response to a large R response, and vice 

versa, is relatively rare in the whole population of spectra. This 

low probability means that such spectra have little influence on 

the construction of the transfer function in the LUT. 

In general spectra for which one of the R,G,B signals is zero 

are less well behaved than spectra corresponding to points near 

the centre. Plotting the differences in L*,a*,b* values against 

R,G,B laser responses (Fig. 16) shows that the errors are well 

distributed around zero and tend to be larger for smaller signal 

values. The scatter is greater for the R channel than G and B. 
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Figure 15. One hundred spectra of real samples producing the largest 

errors with the LUT technique. The dotted vertical lines are the wavelengths 

of the three lasers at 473 nm (blue), 532 nm (green) and 635 nm (red). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Colorimetric errors for L* (top row), a* (middle row) and b* 

(bottom row) for normalised values of R,G,B laser response. 

Plotting the cross-sectional planes of constant R, G and B in 

the LUT (Fig. 17) shows how the colour in each cell is subtly 

modified by the statistical influence of the spectra. For the 

purposes of visualisation the colours in this figure have been 

converted from CIE L*a*b* to sRGB, and out-of-gamut colours 

mapped onto the nearest point on the sRGB gamut boundary. 

The effect is most pronounced in the three planes for which one 

of the signals is zero, corresponding to the three faces of the 

cube intersecting at the black corner (Fig. 18). 

Conclusion 
In this study has been demonstrated a means of improving 

the colorimetric accuracy for characterisation of colour laser 

scanners over what can be achieved by the conventional fitting 

of a 3x3 matrix. The proposed method is novel because it uses 

the statistics of a huge population of reflectance spectra (both 

real spectra measured from samples and synthetic spectra 

generated from functions) to apply local adaptation (i.e. a 

localised deformation of the transfer function in the 3D LUT) to 

the prediction of a surface in colour space fitted by regression to 

the dataset. This gives optimal performance for device colour 

characterisation. The method is applicable to any type of input 

device, including scanners and cameras, for which the spectral 

sensitivity of each channel is known a priori. It could also be 

applied to multispectral imaging systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Cross-sections of the 33x33x33 cube showing planes of 

constant red (top), green (middle) and blue (bottom) in sRGB colour space. 

 

 

 

 

Figure 18. Cross-sections of the three faces of the cube for R=0, G=0 and 

B=0 showing the effect of the spectra. 

References 
[1] Hong G, Luo MR and Rhodes PA (2001) A Study of Digital 

Camera Colorimetric Characterisation Based on Polynomial 

Modelling, Color Res. Appl., 26(1), 76-85. 

[2] MacDonald LW (2011) Choosing Optimal Wavelengths for Colour 

Laser Scanners, Proc. 19th IS&T/SID Color Imaging Conf., San Jose. 

[3] Buchsbaum G and Gottschalk A (1984) Chromaticity coordinates 

of frequency-limited functions, J. Opt. Soc. Am. A, 1(8):885-887. 

[4] Pugsley PC (1975) Colour Correcting Image Reproducing 

Methods and Apparatus, US Patent 3,893,166 

[5] Johnson AJ (1996) Colour Management in Graphic Arts and 

Publishing, PIRA Press, Leatherhead, UK. 

[6] Kang HR (1997) Color Technology for Electronic Imaging 

Devices, SPIE Press, Bellingham WA. 

[7] Hung PC (1993) Colorimetric calibration in electronic imaging 

devices using a lookup table model and interpolations, J. 

Electronic Imaging, 2(1), 53-61. 

Author Biography 
Lindsay MacDonald is a Fellow of IS&T and has had twin careers 

in industrial R&D and academia as a colour engineer. He has edited 

eight books on colour image science and its applications in cultural 

heritage. He is a Consultant Editor for the IS&T book series on image 

science published by John Wiley. He was Co-Chair of the Color Imaging 

Conference in 1998 and is currently a member of the Executive 

Committee of the International Colour Association (AIC), Editor of the 

annual AIC Newsletter, and Co-Chair of the AIC Congress to be held in 

Newcastle UK in 2013. 

142 ©2012 Society for Imaging Science and Technology




