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Abstract 
We show that the accuracy of predicting color recipes for 

solid colors using the conventional Kubelka-Munk model can 
be improved by using grid-based empirical techniques.  

We first identify the regions in color space where such 
improvements would be most useful. These turn out to be the 
dark red, dark blue and the off-white regions. In these regions 
of color space, we create grids using several different methods: 
Delaunay triangulation and Adaptive meshing techniques with 
thresholds either on non-linearity or on fixed distances between 
grid points. This last method was shown to work best for this 
application.  

In order to match an arbitrary point in color space, based 
on the created grid, two different interpolation methods were 
tested: Linear optimization (where a linear relation between 
concentration space and color space is assumed within each 
grid cell) and Local K and S determination (where values of the 
Kubelka-Munk parameters are allowed to vary over color 
space). Our results show that grid methods using Local K and 
S determination lead to a significant improvement in accuracy 
as compared to conventional Kubelka-Munk methods. 

 

Introduction 
For solid colors, the optical model developed by Kubelka 

and Munk [1][2][3] and completed by the well-known Duncan 
rule [4] and Saunderson correction [5], is known to generally 
provide reasonably accurate predictions of reflectance spectra 
for any colorant mixture. However, for imitating a color by 
mixing a set of known colorants the inverse process is needed. 
Although calculating a color recipe based on a measured 
reflectance spectrum is not analytically solvable, in the paint 
industry this problem is routinely solved with numerical 
methods [6][7][8].  

When the color recipes thus found are sprayed out and the 
corresponding reflection spectra are measured, errors still 
remain. These errors may originate from imperfections in the 
Kubelka-Munk model, from physical or chemical interactions 
not accounted for in the Duncan rule and/or Saunderson 
correction, from characteristics in the application process or 
from other causes yet unknown.  

In order to improve accuracy, more sophisticated optical 
models have been developed, e.g. those based on multiflux 
theory [9,10]. But in spite of the steep increase in physical, 
mathematical and numerical complexity of these models as 
compared to the Kubelka-Munk approach, so far the new 
models did not lead to significant improvements in predicting 
reflection spectra for solid colors based on actual paints.  

Instead of trying to derive a more accurate optical theory 
as a way to improve the calculation of color recipes, we have 
developed a more practical approach. In this approach, we 
design a grid in color space. This grid design is optimized by 
requiring that it needs to cover the required part of color space 
with a minimum amount of grid points. But we also require that 

every point in color space should be sufficiently close to the 
neighboring grid points to enable interpolation of the 
corresponding colorant concentrations. In this way we aim at 
eliminating all errors due to the optical models and/or the 
application process. 

We have organized this article as follows. We first provide 
a short overview of previous colorimetric work on grid 
methods. In section 3, we locate the regions in color space 
where current methods have the worst performance. For these 
regions, we investigate the best way to generate a colorimetric 
grid (section 4). In the following sections, we introduce 
different interpolation methods, and give details on the 
experimental test. In section 7, our results identify which 
interpolation method works best for this particular application, 
and we discuss the implications of this work for the color 
formulation process. 

2 Previous work on colorimetric grids 
Partitioning of color space is a technique that has been 

proposed for several other applications. For example, Menegaz 
et al. used Delaunay triangulation to derive a computational 
model for color naming [11].  

To enable the calculation of color recipes, grid based 
approaches roughly similar to those described here have been 
proposed for characterizing printers [12][13][14]. These 
approaches are often based on rectangular cells such as in the 
cellular Neugebauer model [15][16], but grids based on 
tetrahedrons similar to the ones described here have been 
developed for printer characterization as well [17]. One of the 
alternative approaches that we consider is Delaunay 
triangulation. This method has been used in the past to 
calculate the color gamut for different media, including 
halftone printing [18].  

3 Finding the most relevant color regions 
The new approach is meant to be an improvement over the 

current method, in which the calculation of color recipes is 
mainly based on the optical model (Kubelka-Munk theory, 
together with Duncan rule and Saunderson correction). 
Therefore, the most relevant color regions for this investigation 
are the regions where the current method performs worst. 

We therefore selected 100 clusters in CIE-Lab color space. 
From our color formulation databases, we selected 14.260 
colors for which color recipes were available in three different 
paint products (waterborne and solvent borne basecoat-
clearcoat systems, and high-solid topcoat). Reflection 
measurements on the spray outs for these color recipes were 
compared with the reflection spectra predicted by the optical 
model. The color differences between these spectra were used 
as an indicator for the accuracy of the optical model. 

We found that in three regions of color space, the optical 
models showed less accuracy than in the rest of color space. 
These regions showed the largest percentage of colors with a 
model error dECMC

(1.5:1)>0.8. The color coordinates for these 
regions are shown in Table 1. In this article, we will denote 
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these regions as dark red, dark blue and off-white. We 
developed and tested our techniques in these three regions, 
since their accuracy in the rest of color space is expected to be 
better. 

Table 1 Most relevant color regions 
Color region L* a* b* 
Dark red +13.3 to +19.5 +4.5 to +8.1 –3.5 to +2.3 
Dark blue +12.5 to +16.0 -1.5 to +1.1 -10.1 to -7.8 
Off-white +86.1 to +96.0 -4.4 to +3.4 –3.2 to +12.6 
 

4 Creation of the colorimetric grid 
We will discuss several techniques that are available for 

creating a grid in CIE-Lab color space. Once a grid is chosen, 
any position in color space is enclosed by four grid points. 
Thus, cells are formed by sets of four grid points. Within each 
cell, only four colorants (black, white and two additional 
colorants) are needed to cover the corresponding volume in 
color space. If adjacent cells utilize the same set of four 
colorants, they are grouped together in sub-grids. However, we 
found that it was not possible to formulate any of the color 
regions identified in the previous section by utilizing only one 
single set of four colorants. Therefore, each of the color regions 
is subdivided into several sub-grids. We note that this analysis 
is based on D65 illumination only. Adding more light sources 

is possible, but this would increase the dimensionality and 
hence also the complexity of the problem. 

A straightforward approach to create a grid in CIE-Lab 
space is to place grid points on a regular lattice with fixed 
mutual distances. Based on the most efficient way to pack 
spheres, a face centered cubic lattice was investigated. From 
the grid points, cells were constructed by using the well-known 
method of Delaunay tessellation [19][20]. This method is 
illustrated for the two dimensional case in Figure 1. First, non-
overlapping triangles are determined that fill the convex hull of 
the grid points, in such a way that edges are shared by at most 
two triangles. The efficiency of the grid points is ensured by 
demanding that the encompassing circle for each triangle 
contains no other grid points [21].  

As an alternative method for grid creation, we investigated 
the adaptive meshing technique proposed by Krivánek et al. 
[22]. In our implementation of this technique, the distance 
between grid points varies over color space, depending on the 
non-linearity of color coordinates as a function of colorant 
concentrations. This non-linearity is estimated from 
calculations with the optical model. We note that in this way, 
we do not assume that the optical model gives accurate color 
predictions for any given colorant mixture, as is assumed in 
standard approaches. Instead, we only assume that the optical 
model is able to indicate the relative degree of non-linearity for 
different parts of colorspace.   

. 
 
 

 
 

Figure 1. Grid points are connected in CIE-Lab space by using Delaunay tessellation. 
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Figure 2. Adaptive meshing technique for creating a grid in color space. For reasons of clarity, the process is shown here in 2D space. 

 
 
In our implementation, we investigate the reflection 

curves predicted by the optical model along each of the six 
sides of the tetrahedron formed by a set of four neighboring 
grid points. The degree of non-linearity along each of the six 
sides is calculated, and the side with the largest predicted non-
linearity is identified. A new grid point is then created along 
this side, at the place where non-linearity is largest. This also 
creates new tetrahedrons, and the process is repeated for the 
new tetrahedrons as well (Figure 2). In an iterative process this 
leads to grid points for which all sides of the corresponding 
tetrahedrons have a degree of non-linearity below a specified 
threshold value. 

We also tested the performance of a technique in which 
the adaptive meshing technique was based not on a specified 
threshold in non-linearity, but on a specified distance between 
grid points. 

5 Interpolation methods 
One basic assumption of our approach is that grid points 

are sufficiently close to each other that we can assume that a 
good color recipe for any point in color space is found by a 
linear interpolation of the color recipes corresponding to the 
four grid points surrounding it (otherwise, more advanced 
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 (b) 
Figure 3. Grid created with adaptive concentration method using (a) a fixed theoretical interpolation error, and (b) fixed distances in 

color space. 

 
interpolation methods need to be used, such as those proposed 
for draw down formulation in Ref. [23]). The most 
straightforward method for linear interpolation is to assume 
that this linear relation holds between colorant concentration 
space and CIE-Lab color space, or any other standard color 
space. This assumption is valid if grid points are close enough. 
Our results showed that the accuracy could be slightly 
improved if we used a color space based on CIE- L* and the 
chromaticity coordinates x and y. We will refer to this method 
as linear interpolation. 

We carried out some initial tests with linear interpolation 
using six pairs of samples separated by typically dEab

 = 10. 
These tests indicated that increasingly fine grids, with distances 
between points decreasing from dE

ab
 = 10 to 1, lead to average 

interpolation errors decreasing from dE
ab
 = 0.2 to 0.06 (see 

Figure 4). Obviously, a balance needed to be found between 
minimizing the interpolation error without needing to spray too 
many grid points. 

We also tested an alternative interpolation technique, that 
we have called local K and S determination. In this method, 
local adjustments to the Kubelka-Munk K and S parameters are 
made to improve the accuracy of the optical model. In this 
approach, we assume that the values of the K and S parameters 
for all colorants have been calculated with conventional 
methods, based on well-chosen mixtures and covering a major 
part of color space [24]. 

Since the resulting K and S values are supposed to be 
valid for the entire color space, they are referred to as the 
global K and S values. In order to derive locally adjusted 
values for the K and S parameters, we used the following 
approach. For a given point in color space, the four grid points 
of the enclosing tetrahedron are identified. For the colorant 
mixture corresponding to each of these four grid points, the 
global K and S values are calculated based on the global K and 
S values of the constituent colorants. However, for each of the 
grid points, reflection measurements of the 
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Figure 4. Model errors due to linear interpolation, as a function of 
the distance between grid points in color space. 

 
 
sample are available. Using the standard Kubelka-Munk 
equation, these measured reflection values are converted to the 
ratio between the so-called local K and S values. We adjust the 
global K value for the mixture corresponding to a grid point by 
a multiplicative factor f, in such a way that the local K value is 
exactly reproduced. 

Note that the dependence on wavelength of K, S and f 
parameters is accounted for throughout the analysis, but 
suppressed in the notation. 

We also note that in those cases in which more than one 
combination of colorants is able to enclose a certain part of 
color space, we chose the optimal combination of colorants 
based on a metric that combines colorimetric properties, price 
and application properties. 

 

6 Experimental  
For this test, we selected 50 target colors that are actual 

car paints, and for which we want to test the accuracy of 
predicting color recipes. Based on our identification of the 
color regions most relevant for this investigation, we selected 
20 dark red colors, 20 off-white colors and 10 dark blue colors. 

We have tested two different methods for calculating color 
recipes: Linear interpolation, and Local K and S determination. 
As a reference, we used the conventional method of calculating 
color recipes with Kubelka-Munk. Therefore, color recipes for 
the 50 target colors were calculated with 3 methods, resulting 
in 150 paint samples. 

Further, a total of 498 grid points were created, the 
corresponding color recipes were sprayed out and the reflection 
spectra of the resulting samples were measured. Actually, for 
256 grid points this process was repeated in order to test 
reproducibility of the method. In order to formulate the selected 
50 target colors, we found that we needed 14 different 
colorants. The global K and S values of these colorants were 
estimated based on a total of 142 different mixtures. 

Therefore, a total of 1046 color formulas were designed 
and sprayed out, and the corresponding reflectance spectra 
were measured. The processes of mixing colorants, paint 
application and reflection measurement were fully automated in 
order to eliminate human errors. 

For the reflection measurements we used the BYK-Mac 
instrument. The multi-angle measurements were converted to 
effective d/8, gloss-included measurements by using a linear 
regression technique developed by Berns and Petersen [25]. 

 
 

7 Results and discussion 
When creating the grid, we found that the method of 

Delaunay tessellation works fine as long as colors are taken that 
are remote from the boundary of the color solid. However, 
problems arise for colors close to that boundary, in the regions 
where the color solid is concave. Delaunay triangulation is 
problematic for describing the boundary of the color solid, 
since it is not a convex hull in CIE-Lab space. With Delaunay 
triangulation, concavities in the color solid are filled, resulting 
in cells lying outside the color solid. Obviously during 
interpolation this leads to attempts to match colors lying 
outside the color solid, which is not possible. In the literature, 
methods have been proposed for the Delaunay triangulation of 
concave volumes, but no complete solution has been found yet. 

The adaptive mesh techniques do not have this problem. 
Grids created by this technique nicely follow the shape of the 
color solid. Further, the method distributes the error due to 
interpolation uniformly over color space, by subdividing it 
further in those areas where the relation between concentration 
space and color space is most nonlinear [22]. However, when 
we used the adaptive mesh technique as based on non-linearity 
thresholds, we encountered a different problem. The resulting 
grid cells became very irregularly shaped (Figure 3a). This is 
caused by the strongly anisotropic character of the non-linearity 
in color space. Only by basing the adaptive mesh technique on 
fixed distances in color space, this problem was avoided 
(Figure 3b). For this reason, this technique was used in our 
evaluation of the grid approach to predicting color recipes. 

As mentioned before, we have tested three different 
methods to predict color recipes: the conventional Kubelka-
Munk method, Linear interpolation and Local K and S 
determination. For each of the 50 target colors the three 
resulting color recipes were sprayed out, and the reflection 
spectra of the samples were measured. We calculated the color 
difference between the sample and the target color. The results 
are shown in Table 2. 

 

Table 2 Accuracy of different methods to predict color 
recipes. 

 
Method 

Color difference dECMC(1.5:1) 
Average Min. Max. 

Conventional Kubelka-Munk 0.67 0.20 1.86 
Linear interpolation 0.68 0.09 2.35 
Local K and S determination 0.37 0.09 0.71 

 
 
Based on the results shown in Table 2, it can be concluded 

that the method using local K and S values is the most accurate. 
The results are considerably better than those obtained when 
using the Conventional optical model (Kubelka-Munk) or 
Linear interpolation. It is also more consistent than the other 
two methods, in the sense that it avoids cases with large errors.  

Generally, our results show that the method using Local K 
and S determination can be expected to work very well, since 
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in many cases the resulting color accuracy is better than what is 
required for a visual approval. 

For this reason, the grid-based techniques developed in 
this investigation are recommended as a method to improve the 
accuracy of predicting color recipes. 

In future work, we plan to explore similar techniques for 
higher dimensional systems, by extending this work to color 
matching under several different illuminants, and to effect 
coatings that need to be matched under several different 
measurement geometries. We will also investigate a method to 
solve problems that occur when color formulas are not 
completely hiding. These problems generally can be avoided by 
using a suitably colored substrate, but in the grid approach 
there will be neighboring cells that use differently colored 
substrates. Since the color difference between substrates used 
for adjacent cells are expected to be small, we will investigate 
the color accuracy in case all substrates are assumed to be of 
the same color. 
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