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Abstract 
No one wants defects on their products – neither 

manufacturers nor consumers. For manufacturers, a series of 

quality inspection processes is always required to ensure 

qualities of all their products are under control. For consumers 

of liquid crystal displays (LCDs), however, they may only 

concern whether they can see defects on their displays. In this 

sense, visibility of defects is more important than whether they 

really exist. Mura is such type of detects on LCDs that most 

people might have neither heard about it nor been aware of 

(existence of) them on their panels but some professional users 

do concern them a lot. This reflects that Mura defects are 

visually hard to notice and thus tend to be easily overlooked by 

most users; but in certain circumstances they are really an 

issue to image quality. In this research, a Mura detection 

model based on human visual perception was established 

particularly for visibility prediction of Mura on patterned 

backgrounds. It is also a model different from current 

industrial standards which suggest, and therefore are limited 

to, inspections of Mura defects to be carried out on uniform 

neutral grey backgrounds. Our analysis showed that colour did 

not have as much influence on the visibility as previous studies 

reported when Mura defects are viewed against patterned 

backgrounds. For a given Mura size and special frequency of a 

patterned background, there existed a linear relationship 

between the model outputs (dR, in terms of ∆E*
ab) and the 

lightness (L*) of the background. An interesting phenomenon 

was also found that the 1st derivative of the slopes (i.e. slope 

variation across different experimental conditions) of the linear 

functions representing the relationships mentioned above can 

represent the special frequency effect whilst the 2nd derivative 

of the slopes represents the Mura size effect on the visibility of 

Mura patterns. Apparently this model provides more reliable 

predictions of visibility to situations closer to the reality that it 

is usually complex images, rather than uniform colour patches, 

are displayed on LCDs. Preliminary analysis also shows that 

the proposed model can deliver more reliable results for 

patterned backgrounds than S-CIELAB does. 

Introduction  
For many years, researchers have covered this issue by 

providing methods to measure Mura defects and proposing 

visual models to determine whether a Mura pattern is visible 

under certain conditions. But few of them extended 

investigations to conditions where Mura defects are viewed 

against complex images in background. This makes those 

researches less close to the reality that customers normally 

watch complex image contents with their LCD’s and would 

barely notice a Mura defect on their displays. From this point of 

view, it is worth establishing a Mura detection model which 

involves colour and spatial pattern factors. This work seeks to 

provide more reliable grading results from experts in agreement 

with ordinary observers viewing real complex images on 

LCD’s. 

An exaggerated image of the Mura defect on a LCD is 

shown in Figure 1. According to Video Electronics Standards 

Association (VESA), an industrial standard organization, 

“Mura defects appear as low contrast, non-uniform brightness 

regions, typically larger than single pixels.” [1]. In fact, Mura 

defects could be caused by any flaws occurring in any part of 

the manufacture process as long as they have ‘local’ influence 

on, at a later stage when the whole process are finished, the 

amount of light passing through the LCD panel. These include 

flaws from light source (backlit lamp) to any components that 

the light passing through before leaving the panel. All these 

make Mura defects appear in various shapes and cause slight 

changes in the transmission property in local areas of the 

display [2], and it is this subtle nature that  results in them 

being hard to detect by normal optical instruments, although 

our highly-sensitive visual system can see them with relative 

ease. 

 
Figure 1. A typical sample of Mura defect [11] 

For years, researchers have endeavoured to establish a 

reliable automatic inspection system [3,4] as well as a widely-

accepted inspection standard [1,5]. Many studies on Mura 

detection have also been conducted previously. From those 

studies, results show that the contrast detection threshold of 

Mura patterns decreases with display luminance [6,7], which 

reveals background luminance is one of the dominant factors 

that affects the visibility of Mura. Compared with the deviation 

in luminance, however, the spatial gradient of luminance has 

more influence on the results [8]. Position and size of Mura 

also play important roles in Mura detection. While there is no 

surprise that the size of Mura have great influence on its 

visibility [6,9], it is believed that the influence of position is 

associated with a masking effect caused by the geographic 

relationships between Mura and the frames of displays [10]. In 

the same study, it was also reported that a red background has 

the greatest visual contrast threshold, followed by green and 

blue backgrounds. By reviewing the previous studies, it is not 

difficult to realise that few have extended their investigations 

into the conditions in which Mura defects are viewed against 

complex ounds. Research fails to account for the fact that 

humans, who are capable of processing complex image content, 

would barely notice a Mura defect on their displays. 
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Configuration of the Model  
From decades of research, many evidences have shown 

that our colour vision is pattern-colour separable, indicating 

that there are three vision pathways in our visual system – one 

achromatic channel dealing with low spatial frequency signals 

and two chromatic channels that exhibit band-pass filter 

characteristics to colour visual signals [12,13]. This is the 

foundation of our Mura detection model as well as the 

foundations of S-CIELAB [14] and a model of Ferwada et al. 

[15] for visual masking in computer graphics applications. 

Ferwerda et al.’s model also inspired our model in which 

masking effect is involved. 

In order to produce reasonable detection predictions, the 

Mura detection model comprises four processes that simplify 

and imitate the procedures occurring in our visual system from 

the moment an image signal is projected onto the retina to a 

later stage that masking effect takes place. Here the terms used 

to describe each process – colour representation, pattern 

representation, masking and pattern detection were borrowed 

from Ferwerda et al. [15]. A work flow diagram borrowed from 

them, representing their model and our model as well is shown 

in Figure 2. 

 

 
Figure 2. Components of the masking model proposed by Ferwerda et al. 

[15] 

  

Figure 3. Illustration of the psychophysical process of colour representation 

[15]. 

 
Figure 4. The pattern presentation where achromatic and chromatic 

information undergo the same processes for spatial frequency tuning and 

orientation tuning [15]. 

Like s-CIELAB, initially two content-identical images, 

one with Mura called test image and the other one without 

Mura on it called reference image, are input into the 

computational model. The output of this model is the (colour) 

difference of these two images. In order to provide a more 

comprehensible prediction result, however, the colour 

difference is converted into an index with just-noticeable 

difference (JND) as its unit. Inside the model, four independent 

computational components are performed step by step to firstly 

decompose the input image signal into opponent channel 

information (Fig. 3), and then the result is carried out filtering 

operations in frequency domain to remove information that is 

invisible to our visual system (Fig. 4). This filtering operation 

in Ferwerda et al.’s model [15] comprises two processes 

dealing with spatial frequency tuning and orientation tuning. 

Finally the pixel-by-pixel difference of the two input images is 

summed up in a geometric mean manner to give a quantitative 

measure of the Mura to our visual system. This value is then 

converted into JND by applying experimental data as 

thresholds. 

 

Experimental Method 
An experiment was carried out to collect data for model 

training. To determine the just notice difference (JND) for 

different Mura viewed against different types of coloured 

backgrounds, the method of adjustment [16] was used to 

accumulate psychophysical visual assessment data acquired in a 

dark room. 

A 22-inch EIZO CG220 LCD was used as the 

experimental platform in this research.  A three-dimensional 

look-up table (3D-LUT) characterisation model of the display 

was also established in order to generate desired stimuli for the 

experiment and to calculate JNDs in terms of colour difference 

(i.e. ∆E*
ab) for each observer at a later stage. The variables used 

in this experiment were the type (uniform, isotropic noise), 

spatial frequency (0, 2, 4 and 10 cpd), orientation (0˚, 45˚ and 

90˚), background pattern colour (red, green, blue, yellow, 

bright grey and dark grey), and size of the simulated Mura 

(small and large). The patterns of the simulated Mura were 

defined by the two-dimensional Gaussian function given in 

Equation (1) [17].  

Mura(x,y)=L0*((1+c)*exp(-(x2/σ2))*exp(-(y2/2σ2))   (1) 

 

where L0 is the local background luminance, c is the contrast 

and σ is a scaling parameter defining the size of the Mura 

pattern. In this study, the aspect ratio (height/width) of the 

Mura patterns was 1.73 whilst the widths (heights) were about 

3.3˚ (6˚) and 1.2˚ (2˚), which is equivalent to 0.3 (0.17) cpd and 

1 (0.58) cpd, respectively. The noise patterns were luminance-

varying and defined in the MacLeod-Boynton domain [18] with 

contrast of 0.10. Figure 5 illustrates images with different 

conditions used in this experiment. It also lists the background 

colours in CIELAB L*C*h. All the measurements involved in 

the experiment were carried out using a Minolta CS-1000 tele-

spectroradiometer (TSR). There were 14 subjects, 8 males and 

6 females, with normal vision (according to the Ishihara test), 

participating in this experiment. During the experiments, they 

sat 60 cm away from the display to view a 7.5 cm2 test image 

surrounded by a neutral background having a brightness of 

23.43 cd/m2. 
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Figure 5. Illustration of Mura on noisy backgrounds with various spatial 

frequencies. The CIELAB L*C*h values of these coloured backgrounds are 

provided above. 

Results 
Figure 6 shows the JNDs in terms of ∆E*

ab for all 

experimental conditions and includes one standard deviation 

error bars. There are three things/points worth noting. First, 

there is a consistent trend that the JNDs of all colours follow 

this order: yellow ≈ green ≈ red > blue ≈ bright grey > dark 

grey. It seems that colour had influence on the results. But 

further analysis showed that it was the achromatic component 

of the stimuli, not the chromatic ones, which dominated the 

trend. More details about this will be provided and explained 

later in the model training section. Second, masking effect is 

significant as shown in Figure 7. In this figure, colour influence 

is removed by applying an average operation over the results 

out of all colours, i.e. the JNDs for different colour conditions 

were combined. The reason this can be done is because of the 

consistent trend mentioned above. This provides a clearer view 

of the size and masking effect. As can be seen, the masking 

effect for spatial frequency tunings is significant while the 

spatial frequencies of Mura are close to that of the 

backgrounds, i.e. 0.3 cpd for the large Mura and 1 cpd for the 

small Mura. Mura size has a mild influence on detection against 

different backgrounds; the difference is about 0.2-0.5 ∆E*
ab 

greater for large Mura. Last, orientation effect can be ignored as 

shown in Figure 7. In summary, JND values obtained here 

range from 0.3-3.5 ∆E*
ab. 
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Figure 6. JNDs of (a) small and (b) large Mura on noisy background. 
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Figure 7. Mean JNDs of (a) small and (b) large Mura on noisy background. 

Parameters for Model Training  
To make the model work, there are three things need to be 

included in the training task: colour effect, masking effect on 

spatial frequency tuning and masking effect on orientation 

tuning – the results shown previously have revealed these 

requirements. Figure 8 shows the outputs obtained by the 

original model for all the experimental conditions with noisy 

backgrounds. Apparently there is a linear relationship between 

the colour type and the computational results. Since colour 

itself can be further decomposed into one achromatic and two 

chromatic channels, a reasonable assumption was made that it 

was the achromatic component, i.e. the lightness, of the colour 

information which gave the trend in Figure 8(a), and this 

assumption was proved valid in Figure 8(b) when the outputs 

were plotted against lightness of each colour type. In Figure 9 

there are new plots which show the relationship between the 

model outputs and lightness of the backgrounds. As can be seen 

in these plots, the linear functions show good agreements with 

the data with high correlation coefficients. The only difference 

between different spatial frequency conditions is their slopes. 

This can be used as a starting point for the model training work. 

As mentioned earlier, a process called pattern 

representation in our detection model manages to decompose 

colour representation into several individual parts. The 

knowledge behind this is that our visual system processes 

spatial patterns with mechanisms tuning to various ranges of 

frequencies and orientations [19,20]. At this stage, achromatic 

and chromatic information undergoes the same processes for 

spatial frequency tuning and orientation tuning as shown in 

Figure 4. From a modern signal processing point of view, these 

visual mechanisms serve as filters that filter spatial patterns. 

Through this process, a spatial pattern can theoretically be 

discomposed into several individual parts (not necessarily 

independent with each other); those containing Mura pattern 

information are extracted and used for Mura discrimination.  
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Figure 8. (a) Model responses vs. background colour for small Mura and 

(b) the relationship between lightness and the colours used in the 

experiment. 
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Figure 9. Model responses for (a) the small Mura (b) the large Mura. 

 

Wilson and Gelb [20] proposed a line-element theory to 

model the six mechanisms in the visual system (Fig. 10). In 

their model, the spatial-sensitivity profile was designated 

LSF(x) and its Fourier transform was denoted as T{LSF}. They 

are shown in Equation (2) and Equation (3) as follows. Values 

of constants, except constant A, for these two equations are 

provided in Table 1. As suggested by Wilson and Gelb [20], 
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“values for the parameter A, which determines the absolute 

sensitivity of each mechanism,…… were chosen to fit 

threshold-sensitivity data for each of the different types of 

patterns and temporal conditions used in various 

discrimination studies.” 
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Since the six mechanisms all together form the envelope of 

the human visual contrast sensitivity function, the equations 

(Eq.4 and Eq.5) and their corresponding parameters (shown in 

Table 2) suggested by Johnson and Fairchild [21] can be used 

in conjunction with the peak frequencies listed in Table 1 to 

determine the parameter A in Equation 3. 
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Figure 10. Spatial frequency sensitivities of the six mechanisms fit to the 

oblique masking data by Wilson and Gelb [20]. 

Table 1. Values of constants defined by Wilson et al. for the 

spatial and spatial-frequency sensitivity for each 

mechanism [19]. 

Mechanism 

Peak 

Frequency 

(cpd) 

B C 
σ1 

(deg) 

σ2 

(deg) 

σ3 

(deg) 

MA 0.8 0.267 - 0.198 0.539 - 

MB 1.7 0.333 - 0.098 0.294 - 

MC 2.8 0.894 0.333 0.084 0.189 0.253 

MD 4.0 0.894 0.333 0.059 0.132 0.177 

ME 8.0 1.266 0.500 0.038 0.060 0.076 

MF 16.0 1.266 0.500 0.019 0.030 0.038 

Table 2. Parameters for achromatic and chromatic CSFs by 

Johnson and Fairchild [21]. 

Parameter achromatic Red-Green Blue-yellow 

a1 75 109.1413 7.0328 

b1 0.2 0.0004 0.0000 

c1 0.8 3.4244 4.2582 

a2 - 93.5971 40.6910 

b2 - 0.0037 0.1039 

c2 - 2.1677 1.6487 

The results in Figure 8 were obtained from the concept 

mentioned above. In order to give the model some degree of 

freedoms to meet/reflect the visual responses in our experiment, a 

set of weighting factors for the visual mechanisms were added in 

Equation 3 to adjust the absolute sensitivity of each mechanism. 

Therefore the achromatic CSF is rewritten as follows. 

CSF=WF1*MA+WF2*MB+WF3*MC+WF4*MD+WF5*ME+ 

WF6*MF (6) 

 

where MA to MF denote the six mechanisms while WF1 to WF6 

are weighting factors for each mechanism. By applying 

different weighting factors, the influence as well as output of 

the model can be investigated. In Figure 11 two sets of data 

labeled “[0.5 0.5]” and “[0.5 1.0]” represent the results for 

spatial frequency of 2.0 cpd using WF= [0.5 0.5 0.5 0.5 0.5 0.5] 

and WF= [0.5 1.0 0.5 1.0 0.5 1.0] respectively. As can be seen, 

changing values of the weighting factors had no influence on 

the slopes of the data trends but shifted the absolute values of 

the whole data sets. This implies two things. First, value of 1.0 

can be used for all weighting factors, which implies that the 

CSFs given by previous researchers have shown their suitability 

in our model. Second, the purposely chosen values of [0.5 1.0 

0.5 1.0 0.5 1.0] for WF show that the model is insensitive to 

variation of individual visual mechanism. Thus a new approach 

to adjusting/training the model might be necessary.  
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Figure 11. Model responses with different values of weighting factors.  
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Figure 12. Slope variations for the small and large Mura. 

 

Figure 8 shows the initial outputs obtained without any 

parameters added in the model, and they are named the raw 

responses of the model. Apparently there are linear 

relationships between dR and L* and only the slope changes 

with the eccentricity of masking frequency, i.e. the difference of 

spatial frequency between the targets and the backgrounds. This 

implies that a simple linear function can be used to yield the 

output if the input is provided. Furthermore the changing rates 

represented by the slopes of each linear function (except the 

slope for 0 cpd condition) are shown in Figure 12. Very high 

correlation coefficients (R2= 0.97 and R2= 0.99) for the small 

and the large Mura again indicate that the slopes in Figure 9 

changes linearly with the eccentricity of masking frequency. At 

the moment these two phenomena suffice to establish criteria of 

JND values for inputs with different lightness. With theses 
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values as a baseline, responses for 2 JND and 3 JND are then 

used to generate a scale for different eccentricities of masking 

frequency. This reveals a simple fact which was observed from 

our experimental data that the human visual system responses 

differently when the eccentricity of masking frequency or Mura 

intensity varies under fixed lightness and Mura size condition. 

A summary is given as below to show how spatial-frequency 

eccentricity and Mura size affect the output: 

 

The 1st derivative of the slopes represents the frequency effect 

whilst the 2nd derivative of the slopes represents the Mura size 

effect. 

 

Following this idea, the responses (dR) representing 

different JND values are plotted against lightness (L*) in Figure 

13 and Figure 14. In addition to the good agreement between 

the linear functions and the data from all inputs, all three trend 

lines in one plot intersect closely at one point under all spatial 

frequency conditions. These intersections can be described by a 

pair of equations and can be calculated for a given eccentricity 

of the masking frequency. The equations are shown as follows 

and their curves are plotted in Figure 15 and Figure 16. In these 

equations ε denotes eccentricity of masking frequency. 

dR_small = 0.0018*ε2 - 0.0275 *ε + 0.0118 (7) 

L* _small = -0.2648*ε2 + 6.3991*ε - 42.37 (8) 

dR_large = 0.0002*ε2 - 0.0242*ε + 0.0393 (9) 

L* _large = -0.8586*ε2 + 12.719*ε - 39.996 (10) 

The logic behind the model is that: when the spatial 

frequency of the background is given, it basically determines 

how responses change with background lightness – as one of 

the straight lines shown in Figure 9. This can be treated as a 

viewing condition factor for our visual system which causes a 

bias or shifts our visual response to a certain level. Then the 

intensity of Mura, a target as well as a stimulus, determines the 

final state of our visual response. The influence of the Mura 

intensity in the model can be observed in Figure 17. For a given 

masking frequency, the slope of a linear function which 

describes the responses under different lightness conditions 

increases linearly with JND values. Note that the linear 

behaviour stemming from an assumption made for the model is 

based on the Weber’s law. Once the slope of the linear function 

under a certain viewing condition is known, the linear function 

can be determined. Here, the visual response (dR) can be 

calculated according to the input lightness of a background 

image. Therefore when eccentricity of masking frequency, 

lightness of background image and Mura intensity are provided, 

the visual response can be predicted by the model.  

In order to make the output values more comprehensible, 

however, outputs of the model need to be presented in JND 

values. This requires a new scale built in terms of JND. The 

whole concept for training the model can be treated this way: to 

establish 1 JND thresholds as references and then to establish 

equations that can truthfully represent the behaviour how our 

visual system reacts when the intensity of Mura increases. And 

this was achieved by assuming that the response increases 

linearly with the input intensity. The final modified results in 

terms of JND values for the small Mura are shown in Figure 17. 

The target is to have JND values as close as 1.0. As can be seen 

in this figure, this model has a more stable prediction for 

stimuli with averaged lightness above 30cd/m2. 

Performance of the Model 
S-CIELAB [14] is known as a useful tool in measuring 

colour reproduction errors of digital images. The advantage of 

S-CIELAB over CIELAB is that it takes into account 

characteristics of the spatial vision of our visual system by 

applying a spatial filtering pre-processing step in an opponent 

color space. Therefore outputs of S-CIELAB are believed to 

have a more accurate prediction in image errors. To benchmark 

the performance of our model, a comparison between S-

CIELAB and our model was made.  Figure 19 shows the result 

of the comparison on the small Mura. The results of 0 cpd is 

removed in order to make the figure clear to read. Results of 2, 

4 cpd (small eccentricity of masking frequency) and 10 cpd 

(large eccentricity of masking frequency) are shown to provide 

an observation on how these two models perform when 

masking effect takes place. Apparently our model tends to 

produce larger values than S-CIELAB, which reflects the fact 

that observers usually need higher intensity of stimulus to 

perceive Mura defects when visual masking effect occurs.  
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Figure 13. Variations of model responses for small Mura as its intensity 

increases in terms of JND. Each plot represents results of a specific 

background spatial frequency.  
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Figure 14. Variations of model responses for large Mura as its intensity 

increases in terms of JND. Each plot represents results of a specific 

background spatial frequency. 
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Figure 15. Intersections of different JND trend-lines for (a) the small Mura 

and (b) the large Mura.  
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Figure 16. Intersections of JND trend-lines for (a) dR vs. frequency (small 

Mura) (b) L* vs. frequency (small Mura) (c) dR vs. frequency (large Mura) 

(d) L* vs. frequency (large Mura) 
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Figure 17. The influence of the Mura intensity in the model for (a) the small 

Mura and (b) the large Mura. For a given masking frequency, the slope of a 

linear function which can represent the model responses under different 

lightness conditions increases linearly with JND values. 
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Figure 18. Modified results in terms of JND values for the small Mura. 
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Figure 19. Comparison of the performance between S-CIELAB and our 

model. 

Conclusions 
Colour does not have as much influence on the visibility 

as previous studies reported when Mura defects are viewed 

against patterned backgrounds. Evidence also showed that the 

proposed Mura detection model can provide more reliable 

predictions for Mura visibility on patterned backgrounds than 

S-CIELAB. The main reason which causes this difference is 

that S-CIELAB does not take masking effect into consideration. 

Therefore S-CIELAB tends to underestimate the image 

difference required to make Mura defects visible.  
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