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Abstract
An important aspect of image and print quality is the ex-

istence of artifacts, such as compression or print artifacts. A
general perceptual masking model, that describes the perceptual
severity of artifacts on general background, could have been used
to extract specific artifact detectors. However, currently general
models are not mature enough to provide print artifact detectors
for commercial print quality control application. Consequently
we propose to employ machine learning techniques to learn a
specific model for each print artifact based on a relevant set of
features. We used the approach to develop two print artifact de-
tectors. While the proposed approach was developed for print
quality purpose, the method is general and can be used for learn-
ing automatic evaluators for image defects and quality degrada-
tion as well.

Introduction
Artifact Specific Severity Evaluation Tools (ASSETs) com-

pare a defected version of an image with it’s perfect reference
and evaluate the perceptual severity of specific artifacts in the
defected image. In the print quality context, the defected images
are the scans of printed jobs, and we are interested in whether or
not it contains a specific print artifact. ASSETs are the building
blocks of many print quality control applications, both off line
and inline: (a) Off line press health analysis identifies artifacts
on scans of specifically designed test jobs[10, 13]. (b) Percep-
tion guided automatic press diagnosis automatically prints test
jobs, scans them using an inline scanner and analyze the scans
to diagnose the problem [14], and (c) Inline Inspection continu-
ously compares the digital job sent to print with the inline scan
of the actual print, alerting the operator when significant print
artifact occur [1, 16]. All of those applications relay of correct
identifications of print artifacts on scans.

Figure 2 shows some of the print artifacts, which constitute
gross differences between the intended image (the digital orig-
inal) and the actual image (the scan of the print). However, in
some of the cases, the differences are minute and they are ob-
jectionable only due to large scale or Gestalt type aggregations
in the human visual system. Figure 1 demonstrates such a chal-
lenge. The figure shows a close up of two sets of two images.
In each set, one image (left) is the digital image sent to print,
and the other is the scanned print. The images in each pair are
registered, so that their colors, dimensions, and position are as
similar as possible. The spacial and color registration are beyond
the scope of this paper. After registration, there still exist spa-
tial, color and texture differences between the digital reference
(Ref, left) and the scanned image (Def, right), mostly due to neg-
ligible inaccuracies in the printing and scanning processes. The
unobjectionable differences, e.g. contrast and detail deteriora-
tion, are more prominent than the defect present in the scanned
image: a scratch artifact whose faint impression is marked by ar-
rows, however, is visually aggregated to an objectionable artifact
on the actual print. An automatic detection tool should detect the
artifact, and ignore the non-artifact differences.

— (a) (b) (c) (d)

Figure 1. Close up on originals (a: Ref, left) and scans (d:Def, right) of

two images after color and position registration. Arrows point to faint scratch

artifacts on Def images. The most prominent local differences are contrast

and detail loss in Def. This type of scratch artifacts is so faint that you may

need to look on an enlarged digital version to see the artifacts.

The visibility of different artifacts in natural images was
studied in many articles, both in the image fidelity and masking
fields of research. Many fidelity approaches, e.g. [12] and [4],
are based on the human visual models in the frequency domain
(MTF), originally extracted for harmonic bands. Other works
use similar models, were the sinusoidal basis of the frequency
domain is replaced by Gabor basis [15, 20, 21] or alternative
basis [2, 5, 7, 9, 11], where the weights of the different basis
are determined according to an MTF function, or extracted from
small scope tests. Another approach, called SSIM, is based on
correlation between the image and it’s distorted version [19]. An
extension of those, called SPSSIM [1], identify general signifi-
cant image differences between a scan and the digital reference of
the scanned image. However, such a general purpose algorithm
can not detect all print defects while maintaining low false alarm
rate. SPSSIM detects well localized defects with high contrast,
but other specific defects, e.g., bands and streaks, may appear
as low contrast luminance variations that are hardly detectable
with SPSSIM though significant to the human eye, see Fig. 2 for
examples of printed documents that contain bands and streaks.

We propose a new defect specific detection framework, that
utilizes prior knowledge on a specific defect to achieve high de-
tection vs. false alarm rate. In the proposed framework, de-
scribed in the next section, We learn models for specific print
artifacts from examples. Human perception and background tex-
ture masking models define the feature layer of our approach.
ASSETs are built applying machine learning modules on sets of
tagged artifacts. We used the proposed framework to develop
ASSETs for two print defects: First artifact is an especially faint
type of a vertical scratch and the other is a specific type of a hor-
izontal band.

Algorithm
Overview

The framework receives a training set of digital jobs that
were printed, scanned and registered to align the scans to the
digital reference in both color and position. We refer to the digital
reference of each image as Ref, and to the scanned image as Def.
The Ref and Def of each of the images in the training set are
registered, to align the scans to the digital reference in both color
and position. The registration process is beyond the scope of this
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Figure 2. (a) shows a scanned document after registration which contains a band. In addition, the scanned image contains some vertical dust lines that

come from the scanning process. (b) shows a digital reference of (a). (c) shows a scanned document which contains a streak and (d) shows the corresponding

digital reference.

framework as the images go through several registration steps
before reaching the actual defect detection stage.

The user marks the artifact of interest on the Def image,
thereby separates the image into artifact regions and clear re-
gions. Next, the training images are tiled into non-overlapping
small regions, tagged as either artifact or clear. For each region,
the system calculates a set of features described below, and re-
lates them to the tagging marked by the user in the previous stage.
Consequently, the system samples a small subset of regions from
the training image set, and use it to learn the ASSET. The ASSET
is then tested on a bigger test set of new images.

Features
The features integrate accumulative knowledge on defect

detection and defect masking by the image into the proposed sys-
tem. Fourteen features are calculated for each of regions. Nine of
the features are basic features. Most basic features come in pairs.
In each pair, one feature is calculated on the region of interest in
the Ref image, denoted by r, and the other on the corresponding
region in the Def image, denoted by s. The remaining features
are non linear combinations of the basic features.

Basic features
Mean gray level. Artifact is expressed via change in gray lev-

els. Many artifacts have typical deviation towards either

lighter or darker colors.
Standard deviation. Defects exist in the Def image only, hence

influence the standard deviation in the Def region and dif-
ferentiate it from the standard deviation in the Ref region.
In addition, Standard deviation in the Ref image serves as
activity measure, and high activity in the image have a sig-
nificant masking effect.

Proximity to edges. Artifacts are easier to see in smooth re-
gions, away from edges. This features is calculated on the
Ref image only.

Projection. The projection of the Ref or Def region on filter
f , which describes the structure of the artifact. Bands, for
example, have a typical vertical cross section that looks like
the second derivative of a gaussian (Fig. 3 left) [13]. We
assume that f is normalized such that ‖ f‖ = 1. We take the
maximal value of filter response in the region, fs = 〈s, f 〉
for the Def region, and fr = 〈r, f 〉 for the Ref region, to
represent structure similarity to the artifact. The Ref image
contains no defects, hence artifact-like structures in the Ref
image are to be expected in the non-artifact Def image, and
may even reduce the visibility of an actual artifact in these
regions.

Angle. The angles θs,θr, defined as in Fig. 3 right, are the
normalized projection features, and reflect the correlations
between r or s and f .
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Figure 3. Left (a): The filter we use, which shape is a typical shape of

a band. Right(b):A geometrical illustration of the specific defect detection

principle.

Similarity measures
The similarity between a pair of Ref and Def features is

computed by

2 · fr · fs

fr
2 + fs

2 +C1
(1)

for the projection pair of features defined above, where C1 is a
small non zero constant to prevent singularity. The similarity of
the angle and standard deviation pairs of features is defined in
the same manner. Mean similarity in the region represents the
similarity measure in the region.

Artifact detectors
If the printed page contains an artifact in the specific loca-

tion of s, then s is a linear combination of r and f : s = αr + β f
where α,β > 0. In this case, the vectors triplet s, r and f will
hold a geometric relation as illustrated in Fig. 3 right. We want
to identify this situation by using a mathematical operation that
gets high values only if s,r, f hold this geometrical relation. Let
us define the next two terms:

projection ratio. Defined by

d1 =
min( fs,kC2)

fr +C3
(2)

where C2,C3 and k are predefined constants that limit the
values range: 0 < d1 < k.

Closeness. Define as
d2 = max(|cosθs|− |cosθr |,0) (3)

where θs,θr are the angle features in the Def and Ref im-
ages.

Note that both d1 and d2 get higher values as s is more directed
towards f then r is, which is exactly the case of an artifact that is
added to the original image.

Learning method
We propose to use the Regularized Least Squares (RLS) [8]

learning method, described next, to learn the ASSETs.
Each region j in the sampled learning set is represented

by a feature vector �x j and a scalar tag-value y j. We assume
that the ASSET function f (�x) is a smooth function, and denote
it’s smoothness norm in a Reproducing Kernel Hilbert Space
(RKHS) H by ‖ f‖K . In addition we demand that the value of
f (�x j) is close to the tag of this region, y j. Eq. 4 expresses those
demands.

min
f∈H

1
l

l

∑
j=1

(

y j − f
(

�x j
))2 +λ‖ f‖K (4)

were l is the number of regions in the sampled learning set. Let us
consider the case were the norm ‖ f‖2

K is induced by a symmetric,

positive definite function K(�x,�y). In such cases it is possible to
show that the function that minimizes the functional 4 has the
form:

f (�x) =
l

∑
j=1

c jK(�x, �x j), (5)

where the coefficients c j depend on the data and satisfy the fol-
lowing linear system of equations:

(K +λ I)c = y

where I is the identity matrix, and we have defined

(y)i = yi, (c) j = c j, (K)i j = K(�xi, �x j).

Filters
We use the presented approach to develop two ASSETs,

listed below. Both ASSETs seek one dimensional artifacts, one
is a streak artifact and the other is a band artifact.

Faint scratch
We learn a detector for faint scratches. Those scratches ap-

pear as very thin streak artifacts in the process direction: from top
to bottom on figures 1 and 5. We use the approach described in
this paper to learn the filter. Looking for a one dimensional arti-
fact, we average ASSET response along the scratch direction, ob-
taining artifact likelihood evaluation across the print, as shown in
black in Figure 5. Black line in Figure 5 demonstrate the success
of the ASSET in predicting high artifact likelihood in scratch
location, vs. lower scratch likelihood in non-scratch locations.
We compare the results obtained using the suggested framework
to the results obtained when replacing the RLS learning method
with widely known Support Vector Machine (SVM) [3, 17] or
Fisher Linear Discriminant(FLD) [6]. Figure 4 shows false vs.
missed detections for eight test pages in all three methods. We
need to identify at least one scratch on scratched regions, with
no false alarms on non scratched regions. Therefore, To put all
filters on equal ground, we represent each page by two values for
each filter: the clear regions in the page are represented by the de-
tector’s highest response in the clear regions and the scratches in
the page are represented by the detector’s highest response in the
artifact-tagged regions. Blue line shows the proposed ASSET.
Using the best threshold the propose ASSET has two missed de-
tections, hence it detects scratches in 6 out of 8 pages with no
false alarms. The green line in Figure 4 demonstrates the results
of a filter learned using SVM. This filter detects scratches in 5 out
of 8 pages with no false alarms. The red line shows the results
obtained using Fisher Linear Discriminant (FLD).

Paper Marks
We use the approach described in this paper to provide a

real time ASSET for a band type artifact called Paper Marks. To
accelerate the detector we take a subset of the features: Mean
gray level and standard deviation for Ref and Def images, two
projections, two similarity measures, one for the projections and
one for the angles, and the two Artifact detectors. Filter tests
includes 360 prints, that contained 37 strong paper mark artifacts.
The Paper Marks filter detected 36 out of the 37 paper marks,
with no false alarms.

Conclusions
In this paper we present a new framework for developing

specific print artifact detectors and learning perceptual masking
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Figure 4. False detection vs. missed detections for three wiper scratches

detectors: The tool developed with the proposed approach (blue), a tool

learned on the same feature set using SVM(green) and using FLD(red).

Both axes run from zero to eight, with no more than one false alarm and

one true detection considered in each page.

models for specific print quality problem in an image. The ap-
proach combines machine learning with a set of perceptual fea-
tures. The features are based on accumulative understanding of
visual masking as studied in the fields of perceptual descriptors
and masking. We use the RLS learning method to learn to com-
bine the relevant features into a model that describes the visibility
of the specific artifact on different image backgrounds. We use
this approach to develop detectors to identify two print defects
on customer jobs. Successful tests of the detectors obtained by
the framework on a new set of samples implies that the underling
model describes the way people perceive this artifact on different
backgrounds. Those successful tests supports the hope that gain-
ing understanding of the perceptual masking models of several
artifacts can lead to generalization of those models to a general
perceptual masking model.

References
[1] O. Barkol, H. Kogan, D. Shaked and M. Fischer, A Robust Similarity

Measure for Automatic Inspection, ICIP 2010, sep 2010
[2] C. J. Bartleson, Visual Measurements, In Optical Radiation Mea-

surements, C. J. Bartleson and F. Grum Eds., ISBN-0-12-304905-9,
vol. 5, Academic Press, 1984.

[3] C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learn-
ing, 20(3):273-297, September 1995

[4] S. Daly, The Visible Differences Predictor: An Algorithm for the As-
sessment of Image Fidelity. Digital Image and Human Vision: 179-
206, 1993.

[5] K. D. Donohue, C. Cui, M. V. Venkatesh, ”Wavelet Analysis of
Print Defects,” Proceedings of IS&Ts 2002 PICS conference, 42-47
(2002).

[6] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, John
Wiley & Sons 2001.

[7] M. P. Eckert, Andrew P. Bradley, Perceptual quality metrics applied
to still image compression, Signal Processing, vol. 70, pp. 177 - 200,
1998.

[8] T. Evgeniou, M. Pontil, T. Poggio, Regularization networks and
Support Vector Machine, Advances in Computational Mathematics
13(1), 1-50, 2000

[9] J. M. Foley, Human luminance pattern-vision mechanisms: masking
experiments require a new model, JOSA A, Vol. 11, Issue 6, pp.
1710-1719 1994.

[10] T. Ha, J. P. Allebach, D. Cha, ”Measurement and Analysis of
Banding Artifacts in Color Electrophotographic Printers,” NIP24:
IS&Ts 24th International Conference on Digital Printing Technolo-
gies, Pittsburgh, PA, 7 12 (2008).

[11] Lubin J. A visual discrimination model for imaging system design
and evaluation. Singapore: World Scientific Publishers; 1995.

Figure 5. Black line on top of the Def image is wiper scratch likelihood

according to the proposed ASSET. The proposed ASSET finds the wiper

scratches, which are brought in close up in Figure 1, despite of the similar

misleading structures in the image.

[12] J. L. Mannos, D. J. Sakrison, The Effects of a Visual Fidelity Crite-
rion on the Encoding of Images, IEEE Transactions on Information
Theory, pp. 525-535, vol. 20, No. 4, 1974.

[13] H. Nachlieli, D. Shaked, S. Druckman, M. Shalev, Y. Yona. Auto-
matic Mechanical-Band Perceptual Evaluation. IS&T International
Conference on Digital Printing Technologies and Digital Fabrica-
tion, September 2009.

[14] Perception Guided Automatic Press Diagnosis. Nachlieli, H.;
Karni, Z.; Shaul Raz. (2011). NIP27: 27th International Conference
on Digital Printing Technologies and Digital Fabrication, October
2-6, 2011, Minneapolis, Minnesota, USA.

[15] Taylor C.C., Allebach J. P. and Pizlo Z., Discrimination based Ga-
bor pyramid model for image fidelity assessment. Proc. IEEE work-
shop on digital signal processing, 1998.

[16] Vans, Marie; Schein, Sagi; Staelin, Carl; Kisilev, Pavel; Simske,
Steven; Dagan, Ram; Harush, Shlomo Automatic visual inspection
and defect detection on Variable Data Prints, HP Laboratories, HPL-
2008-163R1,(2008)

[17] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995

[18] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image
Quality Assessment: From Error Visibility to Structural Similarity,
IEEE Transactions on Image Processing, Vol. 13, No. 4, 2004.

[19] Z. Wang, E. P. Simoncelli, An adaptive linear system framework
for image distortion analysis. ICIP 2005.

[20] A. B.Watson , Visual detection of spatial contrast patterns, Optical

84 ©2012 Society for Imaging Science and Technology



Express 12, 2000.
[21] A. B. Watson, A. J. Solomon, Model of visual contrast gain control

and pattern masking, JOSA A, Vol. 14, Issue 9, pp. 2379-2391, 1997.

CGIV 2012 Final Program and Proceedings 85




