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Abstract

Chromagenic color constancy is one of the promising

solutions to the color constancy problem. However, this

technique requires two shots of a scene: a conventional RGB

image and an additional image that is optically pre-filtered

using a chromagenic filter. This severely limits the usefulness of

chromagenic based color constancy algorithms to static scenes

only. In this paper we propose a solution to this with the use

of a digital stereo camera, where we place the chromagenic

filter in front of one of the lenses of the stereo camera. This

allows capturing two images of a scene, one unfiltered and

one filtered, in one shot. An illuminant can then be estimated

using chromagenic based illumination estimation methods. Since

more and more digital stereo cameras are being commercially

available, the system can be built quite easily, and being a one

shot solution, it is a practical computational color constancy

method that could be useful in many applications. Experiments

with a modern commercial digital stereo camera show promising

results.

Introduction

Human vision has a natural tendency to correct for the

effects of the color of the light source [1–3], allowing us to

see the color of an object more or less the same under different

lighting conditions. This is why, for example, a red apple

appears red, no matter under which illuminant we observe it.

This ability to account for the color of the light source is

called color constancy. Computational color constancy is to

emulate this ability in color imaging, and this is one of the

fundamental requirements in many color imaging and computer

vision applications. A significant volume of research work has

been carried out in this area; however, they are still far from the

capability of color constancy of human vision.

The primary task in a computational color constancy

algorithm is to estimate the illuminant. The effects of the

color of the illuminant are then corrected to obtain the desired

color constancy. Since the latter part is relatively easy, most

color constancy algorithms focus mainly on the illuminant

estimation problem. Many methods have been proposed for

the illuminant estimation, and these methods are based on

the assumption of spatially uniform color of the light source

across the scene. Some example methods are gray-world [4],

max-RGB [5], a gamut based algorithm [6], neural networks [7],

color-by-correlation [8], Bayesian method [9]. Yet another color

constancy algorithm, known as the chromagenic color constancy,

has been proposed by Finlayson et al. [10], and it uses a special

color filter which they named as chromagenic. Fredembach

and Finlayson [11] claimed to improve this further with their

bright-chromagenic algorithm. Both the chromagenic and the

bright-chromagenic algorithms take two pictures of a scene: a

normal one and one with a specially chosen color filter placed in

front of the camera. These methods have inherent weaknesses,

namely, a need for perfectly registered images, occasional large

errors in illuminant estimation, and a necessity of two shots.

Even though Fredembach and Finlayson [11] claimed to remedy

the large error problem and relax the registration constraint, the

two shot requirement still severely limit its applicability to static

scenes only.

We propose here an extension to the chromagenic based

color constancy algorithms aiming to avoid their shortcomings

and at the same time have comparable results. In order to

avoid both registration as well as two shot constraints, we

propose to use a digital stereo camera, or alternatively two

commercial digital cameras joined together in a stereoscopic

configuration, with the chromagenic filter in front of one of

its lenses. This allows us to capture two images of the same

scene: an unfiltered and a filtered version, in one shot. The

illuminant can then be estimated based on the chromagenic [10]

or the bright-chromagenic [11] algorithm. A custom designed

chromagenic filter or an appropriate filter selected from a set

of filters can be used. Since we are using a stereo camera, it

is also possible to acquire 3D stereo images at the same time.

However, this is outside the scope of the paper. Moreover, the

additional color information obtained with the normal and the

filtered images of a scene could also be used to increase both the

colorimetric and spectral accuracy of the scene, and this has been

investigated extensively by Shrestha et al. [12, 13].

We have performed experiments with the proposed stereo

based chromagenic color constancy method using synthetic

images, and also validated on real images using a set of

hyperspectral images of natural scenes.

In the next section, we discuss the chromagenic and the

bright-chromagenic algorithms. We then present the proposed

stereo based chromagenic color constancy. Experiments and

results are presented next. The results from the experiments are

then discussed, and finally we conclude the paper.

Chromagenic and Bright-Chromagenic Color
Constancy

The chromagenic color constancy algorithm was proposed

by Finlayson et al. [10]. They aimed to make the multiple

light approach initially proposed by D’Zmura and Iverson [14]

plausible. According to D’Zmura and Iverson, if we had p

measurements per pixel and s surfaces, l light sources, and the

light and the surfaces were described by M and N dimensional

linear models then color constancy could be solved (in many

cases) so long as pse >= sM + lN − 1. But the approach

works poorly in practice because the proposed method is highly

nonlinear and numerically unstable. In order to make the idea of

multiple lights a more plausible starting premise for illuminant

estimation, they began with a first approximation that the image

formed by placing a colored filter in front of the camera is the

same as changing the illumination incident on the scene. So, two

images of a scene are captured: one unfiltered and one filtered

through a special filter. They called the specially chosen filter

as chromagenic, if it makes the relationship between filtered and

unfiltered RGBs depend more strongly on the illumination. We

discuss the chromagenic illuminant estimation next.

CGIV 2012 Final Program and Proceedings 69



Chromagenic Illuminant Estimation

The responses of the camera with and without the filter can

be considered as the responses of a single surface under two

different illuminants. When the same surfaces are viewed under

two light sources, the corresponding camera responses, to a good

approximation, can be related by a linear transform [14, 15].

Therefore, if C and CF denote the unfiltered and filtered camera

responses, then these responses can be related by the following

equation:

CF = MC, (1)

where M is a 3× 3 linear transformation matrix. M depends on

both the illuminant and the filter used, and it can be computed as:

M =CFC+
, (2)

where C+ denotes the pseudo-inverse of C. The transformation

matrix M can be described as the transform that maps, in a least

square sense, unfiltered to filtered responses of the camera under

a given illuminant.

The chromagenic illuminant estimation method is based on

the assumption that we know all possible illuminants a priori.

The transforms Mi are different for different illuminants li; the

matrix Mi is determined for each of these illuminants. This

property of chromagenic camera responses is used to identify the

illuminant in a scene, i.e., to solve the color constancy problem.

Let li(λ), i = 1, ...,m be the spectral power distributions (SPD)

of the possible known illuminants, and r j(λ), j = 1, ...,n the

reflectances of the n representative real world surfaces. For each

illuminant li, we determine the camera responses without and

with the chromagenic filter: Ci, and CF
i respectively, which are

3× n matrices whose jth column contains the camera responses

of the jth surface under the ith illuminant. The transformation

matrix Mi for the ith illuminant is obtained using Equation 2.

For a given test illuminant, we select an illuminant lest(λ)
from all plausible illuminants li as the estimated illuminant,

which gives the minimum error:

est = argmin
i

(ei), i = 1, ...,m (3)

where ei is the fitting error that can be calculated as:

ei = ‖MiC−CF
‖, i = 1, ...,m. (4)

Bright-Chromagenic Algorithm

Fredembach and Finlayson [11] proposed the bright-

chromagenic algorithm with the aim to improve the two

major limitations of the chromagenic algorithm: possible large

estimation errors and the need for perfectly registered images.

They did extensive analysis on the influences of the illuminants

and the reflectances on the transformation matrix Mi. These

influences have been quantified with the variability measures.

They found that the linear transforms used in the chromagenic

algorithm vary significantly with the reflectances used in both

training and testing. They tried to find a subset of the reflectance

which is better suited to illuminant estimation. It has been

found that low errors correlate with fairly de-saturated RGBs

whereas high errors correlate with dark and saturated RGBs.

Based on three criteria: easy to pick out, reliably present in

natural images and avoiding dark colors because of the lower

signal-to-noise ratio, they came up with the conclusion to use

bright-achromatic reflectances. They proposed to use a certain

percentage of the brightest pixels (typically 1-3%) in an image
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Figure 1. Illustration of a stereo based chromagenic camera

instead of all the pixels as in the chromagenic algorithm, and

they named the proposed approach as the bright-chromagenic

algorithm. Brightest pixels are defined as the ones with the

largest sum of the squares of the RGB values.

They argued that the bright-chromagenic algorithm is robust

since it does not make assumptions about which reflectances

might or might not be present in the scene, i.e. if there are no

bright reflectances, it will still have an equivalent performance to

the chromagenic algorithm. Moreover, if the filter does not vary

too drastically across the spectrum, the brightest unfiltered RGBs

will be mapped on the brightest filtered RGBs, and by limiting

the number of brightest pixels (typically top 1-3%), the algorithm

has been expected to estimate illuminants even when the images

are not registered.

Stereo based Chromagenic Color Constancy
Even though the bright-chromagenic algorithm tries to ad-

dress the two inherent weaknesses of the chromagenic algorithm,

namely, a need for perfectly registered images, and occasional

large errors in the illuminant estimation, the usefulness of the

algorithm is still severely limited to static scenes only because

of the need of two shots of an image. Furthermore, the

solution proposed by the bright-chromagenic algorithm for the

registration problem is rather weak. It may even fail, i.e.

mapping of the bright pixels in the filtered and unfiltered images

may fall off widely, if we use a filter that varies bit drastically

across the spectrum.

In our proposed technique, a chromagenic filter is placed

in front of one of the lenses of a digital stereo camera, and the

system captures a normal unfiltered and a filtered versions of a

scene, in a single shot. Furthermore, knowing the geometry of

the stereo camera, not only the two images can be registered

rather more precisely but also 3D information of the scene can

be obtained. Among the many registration techniques [16–18],

the Phase-Only Correlation (POC) method [19] could be the one

for precision registration. Figure 1 illustrates a stereo based

chromagenic camera. A simulated sample pair of unfiltered and

filtered images produced from a spectral image (woman reading)

from the University of Eastern Finland [20] with the stereo

camera under one of the test illuminants is shown in Figure 2.

In the next sub-section we present the system model and discuss

how we estimate illuminant with the proposed system.

System Model

Let l(λ) be the spectral power distribution of the light

incident on a surface whose spectral reflectance is given by r(λ).
λ is the wavelength of the electromagnetic radiation, and here

we will be interested in the visible range of the spectrum (from

λmin = 380nm to λmax = 780nm). Let t(λ) be the spectral

transmittance of the chromagenic filter. If sk(λ) denotes the

sensitivities of the one side of the stereo camera without the filter,

and sF
k (λ) denotes the sensitivities of the other side of the stereo
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(a) Unfiltered (b) Filtered

Figure 2. A sample pair of unfiltered and filtered images produced by the

chromagenic stereo camera with the Kodak Wratten 81B filter

camera with the filter, k = {R,G,B}, then the responses of these

cameras: ck and cF
k are given by:

ck =
∫

λmax

λmin

l(λ)r(λ)sk(λ)dλ, (5)

and

cF
k =

∫
λmax

λmin

l(λ)r(λ)t(λ)sF
k (λ)dλ. (6)

Let us denote the unfiltered and the filtered camera

responses in vector forms as: C = [cR,cG,cB]
T and CF =

[cF
R ,c

F
G,c

F
B ]

T , where xT denotes the transpose of x. With these

responses which are related by the Equation 1, an illuminant can

be estimated with the chromagenic or the bright-chromagenic

algorithm discussed above.

It is to be noted that the choice of the chromagenic filter

has a significant effect on all chromagenic based color constancy

algorithms, as the transformation matrices depend on both the

illuminant and the filter. A chromagenic filter can either be

custom designed or selected from a set of filters available. We

discuss this in the following sub-section.

Selection of the Chromagenic Filter

Choice of the filter and the camera sensors greatly influence

the performance of the chromagenic based algorithms. A

rank-deficient filter produces poor chromagenic color constancy

as significant information is lost. With some of the filters

and/or sensors, the chromagenic color constancy may not even

be possible. Two typical examples are: the filter having a

neutral density and the camera sensors behaving like Dirac

delta functions [11]. Given a camera, the camera sensitivities

are fixed and the only controllable parameter will be the filter.

The selection of the filter is therefore vital in a chromagenic

based algorithms. The goal is to select a filter that produces

transformation matrices Mi that depend more strongly on

illuminants and less on the surface reflectance, and such a filter

has been termed as chromagenic by Finlayson et al. [10].

One approach of filter selection would be to select an

optimal filter from a given set of filters through exhaustive

search. Fredembach and Finlayson [11] selected the Kodak

Wratten 81B filter from a set of 53 Kodak Wratten filters. If

there is a considerably large number of filters, computational

complexity with the exhaustive search could be improved by

introducing a secondary criterion [12, 21] which excludes

all infeasible filters from computations. This criterion states

that filter pairs that result in a maximum transmission factor

of less than forty percent and less than ten percent of the

maximum transmission factor in one or more channels are

excluded. Alternative approach would be to design a custom

filter for a given camera, specifically for chromagenic processing.

Finlayson et al. [22] reported, through simulation, that such a

filter produces better results.

Experiments
Experiments have been carried out with two different sets

of data: synthetic and real reflectances, and the estimation results

are compared with the chromagenic and the bright-chromagenic

algorithms along with the gray-world and the max-RGB meth-

ods. Before presenting the experiments, we first discuss the

experimental setup used to carry out the experiments.

Experimental Setup

We discuss here the experimental setup used in the experi-

ments. The same setup and framework as followed in the bright-

chromagenic algorithm by Fredembach and Finlayson [11] have

been used in the experiments. A modern digital stereo camera

from Fujifilm: the Fujifilm FinePix REAL 3D W1 (we call here

after, Fujifilm 3D, in short) has been used. The sensitivities of

this camera measured by Shrestha et al. [21] have been used.

The sensitivities of its left and right cameras are shown in Figure

3. The experiments are carried out first with the same filter used

by Fredembach and Finlayson [11] in their bright-chromagenic

algorithm: the Kodak Wratten 81B (KW81B) filter whose

spectral transmittance are shown in Figure 4.
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Figure 3. Spectral sensitivities of the Fujifilm 3D camera (Left - solid, Right - dotted)
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Figure 4. Transmittance of the Kodak Wratten 81B filter
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Figure 5. Transmittance of the Omega XF2008 filter

The 1995 Munsell surface reflectances (denoted as R) and

the illuminants: the 87 measured training illuminants (L87) and

the 287 test illuminants (L287), data from Barnard et al. [23]

have been used. The transformation matrices Mi are computed

by imaging the whole surface reflectances, R under the training

illuminants L87, and these metrices are used to estimate the test

illuminants. The test illuminants are estimated with the proposed

stereo based chromagenic system using the bright-chromagenic,

the chromagenic algorithms. The illuminants will also be

estimated with the gray-world and the max-RGB methods.

The illuminant estimation algorithms are evaluated using

the same framework as proposed by Hordley and Finlayson [24].

They recommended using the median angular error over the

mean root mean square (RMS) error. Angular error is intensity

independent and it has been widely used in the literature [23–25].

Let Clest
and Clact

be the camera responses of a white reflectance

under the estimated and the actual illuminant respectively, then

the angular error eang is calculated as:

eang = cos−1

(

CT
lact

Clest

‖Clact
‖‖Clest

‖

)

(7)

We have also performed experiments using a different

filter also, selected from a set of 265 filters from Omega

Optical Inc. [26] through exhaustive search. The filter that

gives minimum illuminant estimation error with the filtered and

unfiltered images generated from the surface reflectances R,

under the test illuminants L287 using the transformation matrices

Mi obtained with R and the training illuminants L87, has been

chosen. To improve the computational cost of the exhaustive

search, we used the secondary criteria as discussed above in the

Filter Selection sub-section to skip the infeasible filters. It has

picked the XF2008 as the optimal filter and we have used this to

analyze the estimation results compared to the ones obtained with

the Kodak Wratten 81B filter. Figure 5 shows the transmittance

of the Omega XF2008 filter. The images generated from spectral

data (reflectance) of the images (synthetic and real) are used in

the experiments.

Experiment I: Using Synthetic Reflectances

This experiment has been performed on synthetic images

in the same way as by Fredembach and Finlayson [11], and

according to the testing protocol proposed by Barnard et al. [23].

1000 unfiltered and corresponding filtered images containing

n different reflectances are generated for n = {1,2,4,8,16,32}

randomly picked from R, are generated by illuminating them

with a light randomly selected from L287. Figure 6 shows three

sample pairs of unfiltered and filtered images.
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Figure 6. Sample pairs of synthetic images with 32 reflectances under random

illuminants from L287

The illuminant of each image is then estimated using the

chromagenic and the bright-chromagenic algorithms, and also

with the gray-world and the max-RGB methods. For statistically

robust results, the procedure is repeated for each value of n

twenty times, and the average values are taken. For images where

n ≤ 4, all the pixels are considered while for n > 4, the four

brightest pixels are used in the bright-chromagenic algorithm.

The experiment has been carried out with both the Kodak

Wratten 81B and the Omega XF2008 filters. Table 1 shows the

average median angular errors obtained with the four different

illuminant estimation methods on 1000 images generated with

6 different numbers of reflectances. The results show that the

average angular errors (for all five reflectance cases) produced

by the chromagenic and the bright-chromagenic methods are

comparable, while the results are significantly better than those

produced by the gray-world and the max-RGB methods.

Table 1. Average angular errors for the 1000 images generated with

6 different numbers of reflectances

B. Chrom Chrom B. Chrom Chrom

1 9.74 9.66 6.00 5.76 5.94 5.88

2 7.28 8.32 5.21 5.26 4.96 5.26

4 5.40 6.10 4.34 4.49 4.26 4.25

8 4.13 4.21 3.95 3.71 3.68 3.48

16 3.41 2.78 3.48 3.04 3.44 2.70

32 3.12 1.93 3.43 2.62 3.20 2.31

Average 5.51 5.50 4.40 4.15 4.25 3.98

# Refl. Gray 

World

Max 

RGB

KW 81B Omega XF2008

Experiment II: Using Real Reflectances

In this experiment, we use the real images generated from

hyperspectral images of 8 natural scenes from Nascimento et

al. [27]. The RGB images generated from the hyperspectral

images using the Fujifilm3D camera and one of the illuminant

from L87 are shown in Figure 7. These hyperspectral images

are available online in 820 × 820 × 33 over 400-700nm bands

in 10nm steps. However, the real image contents are less

than 820 × 820, but padded with zeros. Those padded empty

data are removed and only real image contents are used.

From these hyperspectral images, we obtain the unfiltered and

filtered versions of each image for each test illuminant L287.

The test illuminant is estimated in each case with both the

chromagenic and the bright-chromagenic algorithms. The top

3% of the brightest non-saturated pixels are used with the

bright-chromagenic approach.
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The median angular errors produced by both the chro-

magenic and the bright-chromagenic methods along with the

gray-world and the max-RGB methods are given in Table 2. Like

in Experiment I, both chromagenic methods produce comparable

average angular errors, but the results are significantly better than

those produced by the gray-world and the max-RGB methods.

    

Scene #1 Scene #2 Scene #3 Scene #4 

    

Scene #5 Scene #6 Scene #7 Scene #8 

Figure 7. The RGB images generated from hyperspectral images of 8 natural

scenes from Nascimento et al. [27]

Table 2. Median angular errors for the 8 images generated from

hyperspectral data of the scenes

B. Chrom Chrom B. Chrom Chrom

1 7.88 6.62 4.67 4.53 4.37 3.93

2 9.86 21.85 7.79 8.76 6.59 6.85

3 9.45 3.20 5.59 7.69 4.89 6.49

4 5.50 4.75 7.60 8.49 6.47 7.32

5 7.32 11.04 3.40 2.47 3.66 1.87

6 2.83 6.94 4.48 5.28 5.76 7.13

7 0.99 2.12 3.91 3.42 4.91 3.91

8 2.87 3.10 2.83 3.43 2.55 3.98

Average 5.84 7.45 5.03 5.51 4.90 5.19

Gray 

World
Scene #

KW 81B Omega XF2008Max 

RGB

Discussion

Results from both the experiments with the synthetic and

the real images show that both the chromagenic and the bright-

chromagenic color constancy algorithms perform better than the

gray-world and the max-RGB algorithms with both the KW81B

and the Omega XF2008 filters. Fredembach and Finlayson [11]

have shown that the chromagenic based algorithms outperforms

other color constancy algorithms like neural network, LP gamut

mapping and color by correlation.

Among the bright-chromagenic and the chromagenic algo-

rithms, the first experiment on the synthetic images shows that on

the average, the chromagenic algorithm is slightly better than the

bright-chromagenic algorithm, while the second experiment on

the real images shows the other way around. The small average

angular error differences infer that the performance of both the

chromagenic and the bright-chromagenic algorithms are more or

less the same. However, since we use only small percentage of

the pixels (typically 1-3%) in the bright-chromagenic compared

to all the pixels in the chromagenic, the bright-chromagenic is

preferable over the chromagenic as the computational cost with

the first one would be significantly low.

Furthermore, the experimental results show that the optimal

filter, the Omega XF2008, selected from the set of 265 filters,

performs slightly better than the KW81B, the one used with

the Sony-DXC 930 camera by Fredembach and Finlayson [11]

in their bright-chromagenic algorithm. This implies that

the optimal filter depends on the camera sensor, and simply

selecting a filter from a set of available filters could give a

reasonably good estimation results from the chromagenic and

the bright-chromagenic algorithms. We have used filters from

only one supplier as a one point solution, the Omega Optical

Inc. has been chosen as it has a larger set of filters, and the data

are available online [26]. The performance can be improved by

selecting an optimal filter from a reasonably larger set of filters,

possibly from more suppliers.

Conclusion

Chromagenic based color constancy algorithms are able to

estimate illuminants quite well compared to some of the common

estimation algorithms like the gray-world, the max-RGB, gamut

based, neural networks and color by correlation. Our proposed

stereo based chromagenic system provides a one shot solution

which otherwise needs two shots of an image, thus extending the

chromagenic based color constancy to scenes in motion. Fur-

thermore, it can be constructed out of off-the-shelf commercial

digital stereo camera and a color filter. Having more and more

digital stereo cameras available in the market, it is a feasible and

practical solution for color constancy and therefore could have

wider applications, for example in color imaging and computer

vision.

The use of the stereo camera also allows capturing spectral

and 3D images. Simultaneous spectral and/or 3D imaging and

the illuminant estimation would be an interesting future work.
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