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Abstract
We discuss a few selected hypotheses on how the visual system

judges differences of color images. We then derive five image-dif-

ference features from these hypotheses and address their relation

to the visual processing. Three models are proposed to combine

these features for the prediction of perceived image differences.

The parameters of the image-difference features are optimized

on human image-difference assessments.

For each model, we investigate the impact of individual fea-

tures on the overall prediction performance. If chromatic fea-

tures are combined with lightness-based features, the prediction

accuracy on a test dataset is significantly higher than that of the

SSIM index, which only operates on the achromatic component.

Introduction
A measure that accurately predicts perceived image differences

would be useful for evaluating and optimizing image-processing

methods, particularly in the areas of image compression, trans-

mission, and reproduction. Various image-difference measures

(IDMs) have been proposed in the literature. They are based

upon hypotheses on distortions to which the human visual sys-

tem (HVS) is particularly sensitive. Such hypotheses include

pixelwise color differences, pixelwise differences of color at-

tributes (i.e., lightness, chroma, and hue), differences in spatial

changes of color attributes (gradients or variance), color differ-

ences within large areas of the same color [1], global and local

contrast changes, changes of structural information [2], and dif-

ferences in special regions of interest (edges, corners) [3].

Although the cortical mechanisms of image-difference per-

ception are poorly understood, existing IDMs quite successfully

predict perceived image differences for many individual distor-

tions such as compression artifacts, noise, and blur. Most meth-

ods also incorporate hypotheses on how the HVS judges com-

binations of distortions that occur, for instance, in gamut map-

ping or tone mapping. Nevertheless, the prediction performance

of IDMs for images with such complex distortions can be im-

proved.

In this paper we analyze the influence of several hypotheses

on the perceived overall image difference. Assumptions about

how the HVS combines individual differences into an overall im-

age difference are also investigated.

We utilize the recently presented image-difference frame-

work [4] for our evaluations. In addition, we describe in detail

how our IDMs are derived from the hypotheses.

The Image-Difference-Feature Framework
The visual mechanisms that contribute to the assessment of im-

age differences are very complex. We attempt to model these

mechanisms empirically as a combination of simple hypotheses

on how the visual system performs such tasks. These hypothe-

ses are mathematically expressed as image-difference features

(IDFs). Given two input images, our framework computes sev-

eral IDFs, which are then combined to optimize the prediction of

human image-difference assessments [4].

As a first step of our IDF computation we use an image-

appearance model to normalize the images to specific viewing

conditions (illuminant, luminance level, viewing distance). They

are then transformed into a working color space with certain

beneficial properties — for instance, Euclidean distances in this

space should closely match perceived color differences. This en-

sures that image features, such as edges and gradients, are judged

correctly by the subsequent feature-extraction routines.

In summary, image-difference features are computed as fol-

lows:

1. Image-appearance-model transformation

The input images are transformed by an image-appearance

model to normalize them to specific viewing conditions.

Here, we use S-CIELAB, which filters the images “to sim-

ulate the spatial blurring by the human visual system” [5].

2. Color-space transformation

The images are transformed into a working color space. In

this paper, we use the LAB2000HL color space [6], which

is both hue linear and highly perceptually uniform with re-

spect to the CIEDE2000 color-difference formula [7].

3. Difference-map generation

Maps are generated that reflect differences between the im-

ages, e.g., gradient differences or color differences.

4. Characteristic-value computation

Each map is finally transformed into a characteristic value,

e.g., the mean value of all pixels.

The resulting IDFs are combined into an image-difference mea-

sure (IDM) using, e.g., an additive combination model. The co-

efficients of the model can be optimized on an image database

with image-difference assessments of human observers.

Distortions Affecting Image Differences
Hypotheses of Distortions
In the following, we present a list of low-level hypotheses

investigated in this paper. We also explore their importance

for the overall image-difference impression. More hypotheses,

especially on high-level (semantic) image differences, can be

found in the literature.

Hypothesis 1: The HVS is sensitive to lightness, chroma, and

hue differences.

This, of course, includes color differences that are combinations

of color-attribute differences. Gamut-mapping algorithms, for

instance, incorporate this assumption [8].
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Hypothesis 2: The HVS is sensitive to achromatic contrast

differences.

Hypothesis 3: The HVS is sensitive to achromatic structural

differences.

This is particularly important if the distorted image contains

artifacts such as banding.

Hypothesis 4: The HVS is more sensitive to contrast changes in

low contrast image regions.

This hypothesis is related to Weber’s law, stating that threshold

difference is proportional to the magnitude of the stimulus (in

our case contrast). This phenomenon can also be observed for

suprathreshold contrast differences: if, for instance, the contrast

of a distinct edge is noticeably reduced, the edge information is

still present; the same contrast change applied to a weaker edge

may cause it to vanish. The latter contrast change is likely to be

considered more disturbing.

Hypothesis 5: The HVS is not equally sensitive to differences de-

scribed in hypothesis 1–4 on different spatial-frequency bands.

For reasons of simplicity we do not consider this hypothesis

here. It can be incorporated into the analysis by a multi-scale

approach.

Derived Image-Difference Features
A widely used image-difference measure is the structural simi-

larity (SSIM) index proposed by Wang et al. [2]. It incorporates

hypotheses 1 (at least for luminance differences), 2, and 3 by

applying three functions in a sliding window centered around

corresponding pixels x and y of two images:

luminance: l(x,y,c1) =
2µxµy + c1

µ2
x +µ2

y + c1
, (1)

contrast: c(x,y,c2) =
2σxσy + c2

σ2
x +σ2

y + c2
, (2)

structure: s(x,y,c3) =
σxy + c3

σxσy + c3
, (3)

where µx and µy denote the means, σx and σy the standard de-

viations, and σxy the mean-adjusted inner product of the pixel

values within the window. The variables ci > 0 serve to avoid

instabilities for small denominators. The variable c2 of c(x,y,c2)
can be adjusted to account for the contrast-masking property of

the HVS described in hypothesis 4.

These functions are combined using a factorial model, re-

sulting in

SSIM(x,y) = l(x,y,c1)
α1 c(x,y,c2)

α2 s(x,y,c3)
α3 , (4)

where c1, c2, and c3 are adjusted to the working color space, and

α1, α2, and α3 may be used to weight the contribution of each

function to the overall image-difference prediction.

The SSIM index is a simple IDM and incorporates many

of the hypotheses described above. In addition, a multi-scale

extension was proposed, which incorporates hypothesis 5 [9].

Due to its advantageous properties and its popularity we create

image-difference features based on the terms of the SSIM index.

Comments on Image-Difference Features
Before we start our investigations, we address some issues of

using the SSIM functions in our framework:

1. The SSIM index is designed for grayscale images and

ignores color information. To fully incorporate hypothesis 1, ad-
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Figure 1. Contour plot of the SSIM l-function for CIELAB lightness with

c1 = 1. For constant lightness differences, the function increases with in-

creasing absolute lightness, e.g., ∆L∗(µx′ = 10,µy′ = 5)=∆L∗(µx′′ = 80,µy′′ =

75) = 5, but l(x′,y′) = 0.8 and l(x′′,y′′) = 0.99.

Original image Distorted image

c-function di!erence map (c  = 58)2 c-function di!erence map (c  = 0.5)2

Figure 2. The influence of c2 on c-function-based difference maps.

ditional functions are required that include hue and chroma dif-

ferences. Some attempts were already made [4, 10].

2. The l-function shown in Eq. (1) is designed for lumi-

nance. It is not suitable for judging lightness errors in a per-

ceptually uniform color space, where Euclidean distances match

perceived color differences. Lightness differences in darker im-

age areas are considered more disturbing (smaller function val-

ues) than the same differences in lighter areas. This is illustrated

in Fig. 1.

3. The contrast function c reflects the contrast-masking

property of the HVS as described in hypothesis 4. The degree

of masking must be adjusted to the working color space using

parameter c2. Its impact on the difference map is illustrated in

Fig. 2. Large values of c2 emphasize differences of edges, where

even large contrast differences are hardly noticeable. Small val-

ues of c2 emphasize contrast differences in low-contrast areas,

where they are most disturbing.

4. The factorial model used to combine the l-, c-, and s-

functions assumes that the image-difference features are com-
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bined multiplicatively by the HVS. Although this is mathemati-

cally convenient because it keeps the index in a predefined range,

it does not necessarily reflect the actual visual processing. An-

other question is whether a pixelwise combination of difference

maps and subsequent averaging — as suggested by the SSIM in-

dex — yields the best predictions. The reverse processing order,

averaging the maps and subsequent combination, is also conceiv-

able. Please note that all approaches are purely empirical; it is

not yet understood how the HVS combines individual distortions

into an overall image-difference impression.

Methodology
Considered Image-Difference Features
We incorporate each of the SSIM functions into a separate IDF.

However, the issues stated in the previous section necessitate

several modifications as described in the following.

The luminance function l must be replaced by a function

that is invariant to the lightness level. We also need to consider

chroma and hue differences, ∆C and ∆H, that are in a similar

perceived range as lightness differences ∆L in a perceptually uni-

form color space (at least for small differences). We used a func-

tion proposed in [10] to incorporate these color-attribute differ-

ences:

lA(x,y,cA) =
1

cA ·A(x,y)2 +1
, (5)

where A = ∆L, ∆C, or ∆H. We replaced the SSIM l-function by

the l∆L-function and included two functions, l∆C and l∆H , into

separate IDFs. ∆C and ∆H are defined analogously to ∆C∗ab and

∆H∗ab (see [11]) using the coordinates of the LAB2000HL color

space [6] instead of CIELAB.

The function in Eq. (5) operates on a perceptually uniform

color space. Using the Weber-Fechner law and other reasonable

assumptions, it can be derived from the function in Eq. (1), which

is suitable for an intensity-linear space.

In conclusion, we investigate five image-difference features

that correspond to hypotheses 1–4. Figure 3 shows how these

features are extracted from two images.

Combining Image-Difference Features
In the following, X and Y are images compared by the IDM

and ci is the parameter that corresponds to IDFi. In contrast to

the SSIM index, the IDMs proposed here return zero for visual

equivalence of the input images. Higher values correspond to

larger predicted image differences. Note that visual equivalence

does not necessarily mean that the images are equal; spatial sub-

threshold distortions may have been removed by the initial nor-

malization with an image-appearance model.

We investigate three different ways to combine the consid-

ered IDFs into an IDM:

1. Additive model:

IDMAdditive(X ,Y ) =
5

∑
i=1

(1− IDFi(X ,Y,ci)) (6)

2. Factorial model:

IDMFactorial(X ,Y ) = 1−
5

∏
i=1

IDFi(X ,Y,ci) (7)

3. Hybrid model:

IDMHybrid(X ,Y ) =

(

1−
3

∏
i=1

IDFi(X ,Y,ci)

)

+(1− IDF4(X ,Y,c4))

+(1− IDF5(X ,Y,c5))

(8)

The hybrid model assumes that lightness distortions are com-

bined multiplicatively, whereas achromatic and chromatic dis-

tortions are combined additively.

Since the characteristic values determined from the differ-

ence maps are combined, these IDF combinations differ from

the combination used by the SSIM index. The SSIM index per-

forms a pixelwise multiplication of the maps and calculates the

characteristic value from the resulting map. Furthermore, we do

not use any additional parameters to weight the individual IDFs.

The SSIM index allows such adjustments using the parameters

α1,α2, and α3 as shown in Eq. (4).

Results and Discussion
For our evaluations, we used a combined dataset collected in ten

gamut-mapping paired-comparison experiments [10, 12, 13, 14,

15]. This dataset contains 498 reference images (some of which

show the same scene) and 3,891 distorted images corresponding

to different gamut-mapping algorithms and gamut sizes. A total

of 50,662 decisions were collected excluding ties.

Fitting the Model Parameters

Hit Rate

In each trial of a paired-comparison experiment two distorted

images, i and j, and the corresponding reference image o are

presented to an observer. The observer is asked to select the im-

age s(i, j,o) ∈ {i, j} that better represents the reference o. This

selection can be compared with the prediction p(i, j,o)∈ {i, j,o}
of an IDM, which is p(i, j,o) = i if IDM(i,o) < IDM( j,o),
p(i, j,o) = j if IDM( j,o) < IDM(i,o), and p(i, j,o) = o if

IDM( j,o) = IDM(i,o), as follows:

δ (s(i, j,o), p(i, j,o)) =

{

1, s(i, j,o) = p(i, j,o)
0, else

. (9)

The hit rate (HR) is defined as

HR =
∑(i, j,o,k)∈T δ (sk(i, j,o), p(i, j,o))

|T |
, (10)

where T is the set of trial parameters (each element of T con-

tains the image triplet (i, j,o) shown in trial k of the experiment),

sk(i, j,o) ∈ {i, j} is the observer’s decision in trial k, and |T | is

the number of elements in T . If the experiment allows ties, the

corresponding elements are excluded from T . The higher the hit

rate, the better the prediction accuracy of the investigated IDM

is on the underlying visual data.

Hit rates allow a meaningful comparison of IDM predic-

tions on a specific dataset and can therefore be used in objective

functions for model fitting. However, hit rates do not provide

sufficient information to judge the absolute prediction perfor-

mance of IDMs. This is because the hit rate of a particular IDM

strongly depends on the inter- and intraobserver variabilities of

the underlying data, which makes it extremely difficult to com-

pare hit rates across different datasets. We therefore employ the

majority hit rate (MHR), which is the maximum achievable hit

rate for a dataset. The MHR for our test dataset is 0.7741. It is

only reached if the predictions of an IDM agree with the deci-

sions of the majority of observers for any shown image triplet.
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Figure 3. Investigated image-difference features (IDFs). S-CIELAB images result from spatial filtering as proposed by Zhang and Wandell [5].
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Figure 4. Hit rate statistics for the three models. The blue and white bars

represent ±2σ intervals. The black lines indicate median hit rates.

The HR/MHR ratio is not affected by inter- and intraobserver

variabilities and may be used for comparisons of IDMs across

datasets.

Cross Validation

We used a cross-validation approach to optimize the parameters

of our three models. The visual data were split into two sets of

approximately equal size. One set was used for cross validation,

the other was used for testing. All distorted images derived

from the same reference image were assigned to the same set.

We randomly extracted 20% of all reference images from the

training set and adjusted the parameters of the investigated IDM

to maximize its hit rate HROPT
CV on the corresponding trials. The

optimized model was used to calculate the hit rate HRTEST
CV on

the remaining trials of the cross-validation dataset. This was

repeated 81 times. We used the median parameters shown in

Table 1 to evaluate the IDM on the test dataset.

c1 c2 c3 c4 c5

Additive 0.0012 0.1500 0.0875 0.0010 0.0375

Factorial 0.0014 0.1500 0.1000 0.0010 0.0375

Hybrid 0.0012 0.1500 0.0750 0.0010 0.0250

Table 1. Optimized parameters for the three models.

Figure 4 shows hit-rate statistics on the cross-validation dataset.

Interestingly, all three models show similar performance. As the

training hit rates HROPT
CV are not significantly better than the test

hit rates HRTEST
CV , the models do not overfit the data (see next sub-

section for significance tests).

Testing Significance
We are interested if differences of hit rates on the test dataset

are significant, meaning that they are unlikely to be the result

of chance. To test this, we assume that each sample of IDM-

predicted observer decisions follows a binomial distribution with

unknown success probability. Please note that each such sam-

ple defines a hit rate. To judge whether two samples belong to

different success probabilities, p1 and p2, we calculate Yule’s

two-sample binomial confidence interval [16] for |p1− p2| using

α = 5%. If the interval boundaries are positive we conclude that

the two hit rates are significantly different. This approach does

not consider any influence of inter- or intraobserver variabilities

on the hit rate.

Testing the Models
We assessed the prediction performance of the IDMs using

their hit rates on the test dataset. The corresponding hit rate of

the SSIM index served as a reference. The SSIM index was

calculated on RGB images using the default parameters given in

[2]. Table 2 contains the resulting hit rates.

SSIM IDF-based

default optim. additive factorial hybrid

Hit rate 0.5992 0.6024 0.6319 0.6319 0.6340

Table 2. Hit rates of IDMs on the test dataset.

To analyze the impact of individual IDFs we removed IDF terms

from the IDMs defined in Eqs. (6)–(8) and calculated their hit

rates. Please note that the parameters ci of the IDFs were opti-

mized for the IDMs including all five IDFs. Figure 5 shows hit

rates for all combinations of IDFs. Our findings can be summa-

rized as follows:

1. The three investigated combination models do not have

considerable influence on the hit rate.

2. The lightness-contrast-based IDF2 is the most important

IDF — in terms of achieved hit rate — of all IDMs with

just one IDF. More generally, the most accurate among all

IDMs with a certain number of IDFs always includes IDF2.

3. IDMs composed of two or more IDFs perform almost al-

ways better than those with only one IDF.

4. IDMs containing only the lightness-based IDFs (IDF1,

IDF2, and IDF3) perform significantly better than the de-

fault SSIM index. One possible reason is an intrinsic re-

lationship between training and test data. To avoid such

biased comparisons, we optimized the ci parameters of the

SSIM model on the training data using the cross-validation

approach described above. The hit rate of the optimized

SSIM index on the test data is not significantly different

from that of the default SSIM index. It is still significantly

lower than those of the IDMs with only lightness-based

IDFs. Replacing the SSIM l-function with the function
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Figure 5. Hit rates on the test dataset of all possible IDF combinations incorporated into three different IDM models.

shown in Eq. (5) seems to have a positive impact on the

prediction accuracy.

5. Adding another IDF to an IDM does not negatively influ-

ence the prediction performance (except in one case).

6. IDMs containing only the color-attribute differences (IDF1,

IDF4, and IDF5) perform significantly worse than all other

IDMs composed of three IDFs.

7. Adding the chroma-difference-based IDF4 or the hue-

difference-based IDF5 to the lightness-based IDM com-

posed of IDF1, IDF2, and IDF3 increases the prediction

performance significantly.

8. The best investigated IDM achieves a hit rate of only

0.6340, i.e., there is still room for improvement to reach

the majority hit rate MHR of 0.7741.

Please note that the visual data we used were collected to com-

pare gamut-mapping algorithms (GMAs). GMAs commonly in-

corporate hypotheses on distortions to which the HVS is espe-

cially sensitive (e.g., hue shifts) and try to preserve the corre-

sponding image attributes. Consequently, such distortions are

less important for observer decisions in paired-comparison ex-

periments. Furthermore, the studies compared only distorted im-

ages within the same gamut. Chroma distortions of such im-

ages are typically in the same range and therefore less crucial

for the observers’ decisions. This is why the relative importance

of chroma differences obtained from an optimization is highly

biased by the visual data. Figure 6 provides an example: al-

though the chroma differences between the images are highly

objectionable (see Fig. 2), the chroma-based difference map of

IDF4 shows very small intensities. This is due to a small param-

eter c4 resulting from the optimization.

This simple example shows that the distortions assessed in

paired-comparison experiments must be uncorrelated to deter-

mine the actual impact of each IDF on image-difference percep-

tion. A visual database collected for such distortions is a pre-

requisite for optimizing IDMs that can reasonably be used as

objective functions for gamut mapping.

Conclusions
We discussed several hypotheses on how the human visual sys-

tem assesses image differences. We then proposed five image-

difference features (IDFs), which are mathematical representa-

tions of these hypotheses. The IDFs were combined using three

different models (additive, factorial, hybrid); their parameters

were trained on an image database collected in gamut-mapping

experiments. The image-difference predictions on a test set were

compared with those of the SSIM index.

The predictions of our IDMs are significantly more accu-

rate than those of the SSIM index, even if only lightness-based

IDFs are used. Adding chroma- or hue-based IDFs (or both)

further improves the predictions. Regardless of how many IDFs

are combined, the highest accuracy is achieved if the lightness-

contrast-based IDF is among them. Generally, the choice of

combination model does not affect the prediction performance.

There is still room for improvement regarding the predic-

tion performance: our best IDM achieves a hit rate of 63.4% on

the test data, which is far below the maximum achievable hit rate

of 77.4%.

As we only used visual data from gamut-mapping experi-

ments, all distorted images compared by the observers had sim-

ilar chroma differences to their respective reference images. As

a consequence, the influence of the chroma-based IDF was re-

duced in the optimization. To avoid such bias, visual data with a

greater variety of distortions should be used in the future.
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a) IDF1 difference map b) IDF2 difference map c) IDF3 difference map d) IDF4 difference map e) IDF5 difference map

Figure 6. Difference maps of the factorial IDM for the images shown in Fig. 2 (parameters from Table 1). Lighter areas correspond to greater differences.
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