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Abstract

A crucial step in image compression is the evaluation of its

performance, and more precisely available ways to measure the

quality of compressed images. In this paper, a machine learn-

ing expert, providing a quality score is proposed. This quality

measure is based on a learned classification process in order to

respect that of human observers. The proposed method namely

Machine Learning-based Image Quality Measurment (MLIQM)

first classifies the quality using multi Support Vector Machine

(SVM) classification according to the quality scale recommended

by the ITU. This quality scale contains 5 ranks ordered from 1

(the worst quality) to 5 (the best quality). To evaluate the quality

of images, a feature vector containing visual attributes describ-

ing images content is constructed. Then, a classification process

is performed to provide the final quality class of the considered

image. Finally, once a quality class is associated to the consid-

ered image, a specific SVM regression is performed to score its

quality. Obtained results are compared to the one obtained ap-

plying classical Full-Reference Image Quality Assessment (FR-

IQA) algorithms to judge the efficiency of the proposed method.

Introduction

The way to evaluate the performance of any compression

scheme is a crucial step, and more precisely available ways to

measure the quality of compressed images. There is a very rich

literature on image quality criteria, generally dedicated to spe-

cific applications (optics, detector, compression, restoration, . . . ).

When the presence of the original image is available, the

usually applied scheme to design an FR-IQA (Full Reference

Image Quality Assessment) algorithm consists in performing 1)

a color space transformation to obtain decorrelated color coordi-

nates and 2) a decomposition of these new coordinates towards

perceptual channels. An error is then estimated for each one of

these channels. A final quality score is obtained by pooling these

errors in both spatial and frequency domain. The most common

way to perform this pooling is to use the Minkowski error met-

ric. Some studies [1] have shown that this summation does not

perform well. The same final value can be computed for two

different degraded images even if the visual quality of the two

images is drastically different [2]. This is due to the fact that the

implicit assumption of this metric is based on the independence

of all signal samples. It is yet commonly assumed that this is not

true when one uses perceptual channels. This explains why the

Minkowski metric might fail to generate a good final score. The

use of such a metric is not necessarily the best way to score the

quality of a test image. Actually, in the recommendations given

by the ITU [3], the human observers have to choose a quality

class from an integer scale from 0 to 100. Those notes charac-

terize the quality of the reconstructed images in semantic terms

{excellent,very good, good, bad, very bad}. That

way, the human observers make then neither more nor less one

classification, and the given score could be interpreted as a con-

fidence of the observer in its judgment. Since it is not natural for

human beings to score the quality of an image, they prefer to give

a semantic description of what they are watching. This semantic

description is usually feeling description: ”it is beautiful”,”it is

bad”, and so on.

Previous works tried to apply a machine learning-based ap-

proach, mainly based on standard back propagation neural net-

work to predict the quality score of a test image [4, 5, 6]. e.g., in

[4], Bouzerdoum et al. propose a FR-IQA algorithm based on a

neural network approach. The chosen neural network is a stan-

dard back propagation neural network. Its input layer consists of

as many neurons are parameters in the input vector. The network

has two hidden layers of six neurons each, and one output neu-

ron. The characteristic vector to be input into the neural network

is chosen to be composed of several elements based on the Wang

et al.’s features [7]. These include the image mean and the im-

age standard-deviation of both the reference and the test image,

the covariance and the MSE between the reference and the test

image. More recently, NARWARIA et al. [8] propose an IQA al-

gorithm based on support vector regression. The input features

are the singular vectors out of singular value decomposition. Yet,

the proposed approaches do not account for the intrinsic classifi-

cation process of the quality judgment of human beings.

All IQA algorithms perform well (in sens of high corre-

lation with human ratings) for very poor or very good quality

images but in between there are big differences between algo-

rithms. Firstly, one can assume that for medium quality images,

predicted scores do not reflect very well human ratings and pre-

dicted scores are not as good as they would be. In a second inter-

pretation, on can assume that an IQA algorithm using the same

sensitivity across the quality continuum would not be able to re-

fine its prediction for medium quality images. It should be better

to develop a quality metric that can modulate its sensitivity with

respect to image quality. One way to do so, is to classifiy im-

age quality with respect to quality classes and from the obtained

classification, to modelize the distribution of each class in order

to design a quality function whose its sensitivity will differ from

others.

In this paper, the modelization of the judgment of human

beings by a machine learning expert to design a FR-IQA algo-

rithm is proposed. Fig 1 displays the general scheme of the Ma-

chine Learning-based Image Quality Measure (MLIQM) used to

predict the quality of a test image. After computing a feature

vector including several local quality features, a SVM multiclass
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Figure 1. General scheme of the proposed method to obtain the final quality score of a test image.

classification process is performed to provide the final quality

class Ci,∀i ∈ [1, . . . ,5] of the test image. Those five correspond

to the quality classes as advocated by the recommendation ITU-

R BT.500-11 [3]. Finally, from this classification a SVM regres-

sion process is applied to score the quality of the test image. This

way, the proposed IQA method yiels a sensitivity adaptation to

quality image in order to counterbalance medium prediction of

usually used IQA techniques.

The Selected Full-Reference Features

To design the input features vector of the classification pro-

cess, only derived full-reference characteristics are employed. A

scalar is then generated for each trial feature. The whole set of

computed scalars forms the feature vector associated to an image.

This vector will be classified to designate the associated class of

quality.

In [9], SHEIK et al. compared 10 recent IQA algorithms

and determined which had particularly high levels of perfor-

mance. They concluded that no IQA algorithm has been shown

to definitively outperform all others for all possible degradations,

although owing to the inclusion of both scene models and percep-

tual models, the MS-SSIM index outperform many with statisti-

cal significance. Thus, factors embedded in the MS-SSIM index

will serve a spatial criteria as described in section .

Wang et al. [10] have shown that natural images are highly

structured, in the sense that their pixels exhibit strong dependen-

cies, and these dependencies carry important information about

the visual scene. Structural information is located on visible

edges of the image. These edges correspond to spatial frequency

that infers in a positive or negative way with the other frequen-

cies to produce spatial structures of the image. Thus, Spatial-

frequency factors are computed to take into account structural

information.

Spatial criteria (13 features)

The first selected criteria in our study concern the factors in-

tegrated in the MS-SSIM metric proposed by WANG and BOVIK

[11]. These criteria allow us to measure 1) the luminance distor-

tion, 2) the contrast distortion and 3) the structure comparison.

Those criteria are computed considering only the Achromatic in-

formation. The authors proposed to represent an image as a vec-

tor in an image space. In that case, any image distortion can be

interpreted as adding a distortion vector to the reference image

vector. In this space, the two vectors that represent luminance

and contrast changes span a plane that is adapted to the reference

image vector. The image distortion corresponding to a rotation

of such a plane by an angle can be interpreted as the structural

change.

To obtain a multi-scale index, a low-pass filter is applied

to the reference (I) and the distorted images (J). Next a down-

sampling of the filtered images by a factor of 2 is performed.

Considering the initial design of the MS-SSIM indice that con-

sists in computing the factors c(·) and s(·) at five different scales,

and the luminance l(·) at the coarser level, 11 distortion maps are

generated. Each of them is then pooled in a single scalar distor-

tion score, providing 11 factors that are integrated in the feature

vector.

Since previous criteria only concern the achromatic axis,

two local descriptors dedicated to chromatic information are

computed [12]. Those descriptors are not punctually defined in

the image but with respect to the mean value of the local neigh-

borhood of the pixel. The two used features are 1) a local chromi-

nance distortion feature measuring the sensitivity of an observer

to color degradation within a uniform area and 2) a local colori-

metric dispersion feature that measures the spatio-colorimetric

dispersion in each one of the two color images. The calculation

of these two desriptors is performed in an antagonist Luminance-

Chrominance color space, namely the CIE Lab colorspace [13].

These two criteria are also included in the feature vector.

Spatial-frequency criteria (12 features)

The aim of such features is to model, as well as possible,

HVS-characteristics such as contrast masking effects, the lumi-

nance variation sensitivity, and so on. Many models exist to esti-

mate the visibility of errors by simulating the relevant functional

properties of the HVS. All these models perform decomposition

of the input signal into a set of channels, each of them being se-

lectively sensitive to a restricted range of spatial frequencies and

orientations, in order to account for the spatial-frequency sensi-

tivity of the HVS. Decompositions mainly differ from number

radial bands, orientations and bandwith [14, 15, 16].

Among all existing decompositions, the steerable pyramid

transform [17] is used in this paper to quantify contrast masking

effects. The decomposition consists in many spatial frequency

levels, which are further divided into a set of orientation bands.

The basis function are directional derivative operators. In this

paper, three levels with four orientation bands with bandwidths

of 45 degrees 0,45,90,135 plus one isotropic lowpass filter are

used. The coefficients induced by the decomposition are next

squared to obtain local energy measures. As mentioned in [18],

those coefficients are normalized to take into account the dy-

namic limited range of the mechanisms in the Human Visual Sys-
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tem.

Let a(x,y, f ,θ ) be an original coefficient issued from the

decomposition process located at the position (x,y) in frequency

band y and orientation band θ . The associated squared and nor-

malized sensor output r(x,y, f ,θ ) is defined as

r(x,y, f ,θ ) = k
(a(x,y, f ,θ ))2

∑φ∈0,45,90,135(a(x,y, f ,φ))2 +σ2
, (1)

This procedure leads to normalized sensors having a limited

dynamic range. Each sensor is able to discriminate contrast dif-

ferences over narrow range of contrasts. This is why the use of

multiple contrast bands (with different k’s and σ ’s) is required to

discriminate contrast changes over the full rang of contrast.

The final stage computes the simple squared error norm be-

tween the sensor outputs from the reference image r0(x,y, f ,θ )

and the degraded images r1(x,y, f ,θ ) for each frequency band t

and orientation band θ :

∆r( f ,θ ) = ‖∑
x,y

r0(x,y, f ,θ )− r1(x,y, f ,θ )‖2 (2)

From this step, 12 scores are available and integrated within

the feature vector.

SVM classification and regression
From all existing classification schemes, a Support Vector

Machine (SVM)-based technique has been selected due to high

classification rates obtained in previous works [19], and to their

high generalization abilities. The SVMs were developed by VAP-

NIK et al. [20] and are based on the structural risk minimization

principle from statistical learning theory. SVMs express predic-

tions in terms of a linear combination of kernel functions cen-

tered on a subset of the training data, known as support vectors

(SV).

Given the training data S = {(xi,yi)}i={1,...,m}
,xi ∈ R

n

, yi ∈ {−1,+1}, SVM maps the input vector x into a high-

dimensional feature space H through some non linear mapping

functions φ : Rn
→ H, and builds an optimal separating hyper-

plane in that space. The mapping operation φ(·) is performed by

a kernel function K(·, ·) which defines an inner product in H. The

separating hyperplane given by a SVM is: w ·φ(x)+b = 0. The

optimal hyperplane is characterized by the maximal distance to

the closest training data. The margin is inversely proportional to

the norm of w. Thus computing this hyperplane is equivalent to

minimize the following optimization problem:

V (w,b,ξ ) =
1

2
‖w‖2 +C

(

m

∑
i=1

ξi

)

(3)

where the constraint ∀m
i=1 : yi [w ·φ (xi)+b] ≥ 1− ξi , ξi ≥ 0 re-

quires that all training examples are correctly classified up to

some slack ξ and C is a parameter allowing trading-off between

training errors and model complexity. This optimization is a con-

vex quadratic programming problem. Its whole dual [20] is to

maximize the following optimization problem:

W (α) =
m

∑
i=1

αi −
1

2

m

∑
i, j=1

αiα jyiy jK
(

xi,x j

)

(4)

subject to ∀
m
i=1 : 0 ≤ αi ≤ C , ∑m

i=1 yiαi = 0. The optimal so-

lution α∗ specifies the coefficients for the optimal hyperplane

w∗ = ∑m
i=1 α∗

i yiφ (xi) and defines the subset SV of all support

vector (SV). An example xi of the training set is a SV if α∗

i ≥ 0

in the optimal solution. The support vectors subset gives the bi-

nary decision function h:

h(x) = sign( f (x)) with f (x) = ∑
i∈SV

α∗

i yiK (xi,x)+b∗ (5)

where the threshold b∗ is computed via the unbounded support

vectors [20] (i.e., 0 < α∗

i < C). An efficient algorithm SMO

(Sequential Minimal Optimization) [21] and many refinements

[22, 23] were proposed to solve dual problem.

SVM model selection
Kernel function choice is critical for the design of a machine

learning expert. Radial Basic Function (RBF) kernel function is

commonly used with SVM. The main reason is that RBF func-

tions work like a similarity measure between two examples.

In this paper, the common One-Versus-One (OO) decompo-

sition scheme is used to create 10 binary classifiers. Let ti, j,∀i ∈

[1,5], j ∈ [2,5], j > i be a binary problem with ti, j ∈ {+1,−1}.

Number 5 represents the final quality classes according to the

ones recommended by the ITU. Let hi(·) (Eq. 5) be the SVM de-

cision function obtained by training it on the ith binary problem.

The binary problem transformation is the first part of a combi-

nation scheme. A final decision must be taken from all binary

decision functions. Since the SVMs are binary classifiers, the

resolution of a multi-class problem is achieved through a combi-

nation of binary problems in order to define a multi-class deci-

sion function D. One interesting way to achieve this combination

is the use of the theory of evidence since the confidence one has

in classifiers can be take into account for the final assignment

decision.

The combination of binary classifiers
Once the multi-class classifier has been decomposed in ten

binary classifiers, one needs to take a decision about the final

quality class assignment of the input vector. This assignment is

done using the theory of evidence framework (also known as the

Dempster-Shafer theory or the belief functions theory) [24, 25].

Indeed, each of the binary classifier can be considered as an in-

formation source that can be imprecise and uncertain. Combin-

ing these different sources using the theory of evidence yields

to process uncertain information to take the final assignment de-

cision. Conceptually, the final decision is taken with respect to

the confidence we have on the results of each binary classifier.

The confidence index can be provided in many different ways:

a recognition rate, a likelihood probability, an a posteriori prob-

ability, and so on. Yet, SVMs do not directly provide such a

measure.

In this paper, an a posteriori probability is computed from

the output of the SVM and will serve as confidence index. In-

stead of estimating the class-conditional densities p( f |y), a para-

metric model is used to fit the posteriori p(y = 1| f ) where f

represents the uncalibrated output value of SVMs. PLATT [21]

has proposed a method to compute the a posteriori probabilities

from the obtained SVM parameters. The suggested formula is

based on a parametric form of a sigmoid as:

p(y = 1| f ) =
1

1+exp (E f +F)
, (6)
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where the parameters E and F are fit using maximum likelihood

estimation from a training set ( fi,yi).

Elements of theory of evidence.

Let Ω = {ω1, . . . ,ωN} be the set of N final classes pos-

sible for the quality of an image, called the frame of dis-

cernment. In our study, N = 5 and Ω corresponds to the

five final classes (ωl)1≤l≤5 respectively representing the five

quality classes {excellent,very good, good, bad, very

bad} Instead of narrowing its measures to the set Ω (as per-

formed by the theory of probability constrained by its additivity

axiom), the theory of evidence extends on the power set Ω, la-

beled as 2Ω, the set of the 2N subsets of Ω. Then a mass function

m is defined and represents the belief allowed to the different

states of the system, at a given moment. This function is also

known as the initial mass function m(·) defined from 2Ω in [0,1]

and corroborating:

∑
A⊆Ω

m(A) = 1 and m( /0) = 0 (7)

where m(A) quantifies the belief that the search class belongs to

the subset A ⊆ Ω (and to none other subset of A). Subsets A such

as m(A)> 0 are referred to as focal elements. A represents either

a singleton ω j or a disjunction of hypothesis. In the case where

the set of hypothesis is exhaustive and exclusive, the mass of the

empty set is equal to 0. Such assumption means that the solution

belongs to the frame of discernment.

In case of imperfect data (e.g., incomplete or uncertain

data), fusion is an interesting solution to obtain more relevant in-

formation. In that case, the combination can be performed from

the mass function in order to provide combined masses synthe-

sizing the knowledge of the different sources.

Two initial mass functions m1 and m2 representing respec-

tively the information providing from two independent sources,

can be combined according to Dempster’s rule [24]:

m(A) =
∑B∩C=A m1(B)m2(C)

1−K
,∀A ∈ 2Ω, A 6= /0. (8)

K is known as the conflict factor and represents the discrepancy

between the two sources. It corresponds to the mass of the empty

set if the masses are not normalized

K = ∑
B∩C= /0

m1(B)m2(C). (9)

One notes that Dempster’s combination, also known as orthogo-

nal sum and written as m = m1 ⊕m2, is commutative and asso-

ciative.

When performing the Dempster’s combination, it is crucial

to take into account the value of K, which is the normalization

term of the combination: the higher the value, the more inco-

herent the combination is. When k = 1 one reaches a complete

opposition and the data fusion is impossible. Several solutions

have been developed to deal with this conflict term. For example

SMETS [26] proposed to avoid the normalization step, since he

considered the conflict can only come from a bad definition of

Ω. In that case, K represents the mass associated to one or more

new hypothesis that have not been initially taken into account.

After performing the combination, the decision associated

to the most “probable” element Ω has to be quantified. Among

the existing rules of decision, the most commonly used is the

maximum of the pignistic probability. This decision rule, intro-

duced by Smets [27] uses the pignistic transformation that allows

to distribute the mass associated to a subset of Ω over each one

of its elements:

BetP(ωl ,m) = ∑
ωl∈A⊆Ω

m(A)

|A|
,∀ωl ∈ Ω,∀1 ≤ l ≤ 5 (10)

|A| is the cardinal of A. The decision is executed from the ele-

ments of Ω the highest value of which

Mass function design

One of the main drawbacks of the theory of evidence is the

design of mass functions: the quality of the fusion process de-

pends on the quality of the mass function. The design of this

mass function is deeply linked to the application.

Among all existing models, the one proposed by DENŒUX

[28] has been retained in our study on account of its integra-

tion of both the distance to the neighbors and different criteria of

neighborhood in its definition. Thus the mass m({ω j}) is defined

as a decreasing function of the distance d between the vector to

classify and the barycenter of the class:

{

m(ωl) = α exp(−γld
2)

m(Ω) = 1−m(ωl )
(11)

where 0 < α < 1 is the a posteriori probability computed from

the binary SVM dedicated to the class ωl . γl depends on the class

ωl and is computed by minimization of an error criterion using

the SEM (Stochastic Expectation Maximization) algorithm.

The mass functions yield to take into account the associated

uncertainty to each one of the classifier. Thus, close classes are

brought together in the same focal element, and the final decision

is taken only after combining the obtained results from other pro-

jections.

To construct such a focal element, the input vector it not

associated to only one class from{ω1,ω2,ω3,ω4,ω5}, but to a

subset of classes corresponding at most to Ω. To generate such a

subset, the affectation constraint has to be loosened. One way to

perform that is to generate an interval computed from the maxi-

mum value of the a posteriori probabilities to generate the subset

A such as:

A = {ωl ∈ Ω/max(pl)−δl ≤ pl ≤ max(pl)} (12)

where l ∈ {1, . . . ,5} and δl is an ad-hoc constant depending on

the used classifier.

In that case, all the classes for which their probabilities are

included within this new interval are considered as candidates for

classification during the fusion process.

SVM regression scheme
Even if scoring the quality of an image is not natural for

human beings, it is quite necessary to obtain scalar quality score.

The main reason is due to the fact that total order only exists in

the real set IR.

SVMs can be applied not only to classification problems but

also to the case of regression. Our SVM-based classifier does

not directly provide any quality score. In order to provide such
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a quality score, we use the support vector regression technique

referred to as ν-SVR [29] which a commonly used to solve re-

gression problems. In particular ν-SVR has the advantage of

being able to automatically adjust the width of the ε-tube [29].

We first present the ε-SVR and then present ν-SVR as

an improvement [29, 20]. Given the training data S =

{(xi,yi)}i={1,...,m}
,xi ∈ R

n , yi ∈ {−1,+1}. In ε-SVR, x is

first mapped to z = Φ(x) in feature space, then a linear function

f (x,w) = wT z+b is constructed such that it deviates least from

the training set according to a ε-insensitive loss function

|y− f (x)|ε =

{

0 if |y− f (x)| < ε

|y− f (x)|− ε otherwise

while ‖w‖ is as small as possible. This is equivalent to minimize

min
1

2
‖w‖2 +C

(

m

∑
i=1

(ξi +ξ ∗

i )

)

subject to ∀
m
i=1,yi− fi ≤ ε +ξ ∗

i , fi−yi ≤ ε +ξi,ξi,ξ
∗

i ≥ 0 where

fi = f (xi,w) and C is a user-defined constant. After training,

those nonzero ξi’s and ξ ∗

i ’s will be exactly equal to the difference

between the corresponding yi and fi.

A drawback of ε-SVR is that ε can be difficult to tune. ν-

SVR alleviated this problem trading off ε against model com-

plexity and training error using parameter ν > 0. Mathemati-

cally, the problem becomes

min
w,ε ,ξi,xi∗i

1

2
‖w‖2 +C

(

νε +
1

m

m

∑
i=1

(ξi +ξ ∗

i )

)

(13)

subject to ∀
m
i=1,yi − fi ≤ ε + ξ ∗

i , fi − yi ≤ ε + ξi,ξi,ξ
∗

i ≥ 0 and

ε ≥ 0. In [30], Schölkopf have shown that ν is an upper bound

of the fraction of margin errors and a lower bound of the fraction

of SV. Furtermore, he shown that, with probability 1, ν equal

the both fractions. Thus, in situations where prior knowledge on

these fractions is available, ν much be easier to adjust than ε .

In this paper, the RBF is chosen as kernel for ν-SVR. For

each quality class, a ν-SVM is trained in order to estimate func-

tion f as defined in Eq. 5 using the quality scores of the training

sets. In order to be coherent with the ITU scale, a numerical

scale is assigned to each quality class. The range of the five qual-

ity scales is [0;5] and each quality scale has a numerical scale of

length 1. Thus the quality class “very bad quality” is associated

to the scale [0,1], the following one “bad quality” is associated to

the scale ]1;2], and so on until the final quality class “excellent”

that is associated to the scale ]4;5]. Thus, no overlap between

scores obtained from different classes is possible.

Finally, one obtains five regression functions associated to

each quality class applying the One-Versus-All approach. When

a distorted image is first classified within a quality class, the as-

sociated regression function yields to score the quality of that

image using a scalar number.

Experimental setup and performance mea-
sure
Experimental setup
The used image databases

To judge the performance of the proposed approach, two

different image databases are used: 1) the LIVE database release

2 [31] and 2) the TID2008 database [32]. The LIVE database

consists of 5 subsets of 5 types of distortions; 1) JPEG2000

distortions (227 images), 2) JPEG distortions (233 images), 3)

White noise distortions (174 images), 4) Gaussian blur distor-

tions (174 images), and 5) Fast-fading Rayleigh channel dis-

tortions (which are simulated with JPEG2000 compression fol-

lowed by channel bit-errors) (174 images). The subjective ratings

(that will serve as groundtruth) in its Differential Mean Opinion

Score (DMOS) form are also available.

The TID2008 database contains 25 reference images and

1600 distorted images using 16 distortion types, as described in

Table 1. The MOS value of each image is provided too.

The training and test sets design To apply the MLIQM clas-

sification process, two distinct sets have been generated from the

trail databases: the training sets and the test sets. Since five qual-

ity classes are used, ten OO-SVM classifiers are designed.

One training set (TrainC1) is generated from LIVE

database. This is composed of the degraded versions of 12 im-

ages of the LIVE image database, for all kind of degradation.

The LIVE test set (TestC1) is composed of the degraded versions

of the 13 remaining images.

To complete ν-SVM regression, five training sets (TrainR1,

TrainR2, · · · , TrainR5) are generated for each quality class, fol-

lowing the same previous design process. This will result in five

regresion functions design, i.e., one per quality class.

The parameters of both the SVM classification scheme and

the ν-SVM regression scheme are determined using a 10-fold

cross-validation technique on the training sets. In addition, a

bootstrap process with 999 replicates is used to quantify the per-

formance of MLIQM.

As training is only applied on LIVE subsets (TrainC1,

TrainR1, TrainR2, · · · , TrainR5), the entire TID2008 image

database will serve as test set as well as the subset TestC1.

Performance measures To measure the performance of the

proposed approach, a comparison with usual state-of-the-art FR

IQA algorithms is performed. These FR-IQA techniques are MS-

SSIM [7], VSNR [33], VIF [34] and PSNR. All these methods

are computed using the luminance component of the images.

To provide quantitative performance evaluation, three mea-

sures of correlation have been used: 1) Pearson, 2) Kendall and

3) Spearman measures. To perform the Pearson correlation mea-

sures (CC), a logistic function (as adopted in the video quality

experts group (VQEG) Phase I FR-TV test [35]) was used to pro-

vide a non-linear mapping between the predicted values and sub-

jective scores. This function is a three-parameter logistic func-

tion

r(x) =
b1

1+exp (−b2(x−b3))
(14)

This nonlinearity is applied to the FR-IQA algorithm score,

which give a better fit for all data. Kendall (KROCC) and Spear-

man (SROCC) rank order correlation measures were computed

between the DMOS values and the predicted scores obtained us-

ing any trial FR-IQA algorithms. Those measures can be inter-

preted as prediction accuracy measures (Pearson and Kendall co-

efficients) and prediction monotonicity measure (Spearman coef-

ficient).
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Figure 2. Obtained correlation coefficients between the predicted DMOS

values and the subjective DMOS scores considering LIVE database test set.

Results

All three correlation coefficients (LCC, KROCC, SROCC)

have been computed between the predicted values and the sub-

jective DMOS scores considering the test set TestC1, the entire

LIVE database and the entire TID2008 database. Since similar

results have been obtained for the three correlation coefficients,

only SROCC is reported.

Figure 2 presents SROCC values obtained between the pre-

dicted values and the subjective DMOS scores considering both

the test set TestC1 and the entire LIVE database for all the five

trial FR-IQA methods. Concerning the MLQIM algorithm, the

displayed results are median values of SROCC. From the cor-

relation evaluation results, we see that the performance of the

MLIQM is significantly better than for the four tested FR-IQA

algorithms when whole LIVE database is considered. For most

subsets of LIVE, the use of MLIQM provides consistent im-

provement in the performance of IQA algorithms for different

correlation coefficients. Even if improvements are not all sig-

nificant (which is not really surprising since several trial IQA

measures achieve high performance on LIVE), this consistency

of improvement can be interpreted as an indicator of the validity

of the proposed approach. A second interpretation concerns the

selected features. As they are of prime importance to reach high

quality results for machine learning classification and regression,

this improvement tends to demonstrate that the used features are

relevant to design SVM classification and regression-based NR-

IQA algorithm. Even if MLIMQ seems to be less performant for

fast fading degradation (that uses JP2K), the difference of corre-

lation coefficients with the best IQA method is not significantly

different.

These high obtained correlation coefficient values were ex-

pected since the training sets used to train the SVM classifier

and the SVM regression scheme where generated from LIVE

database.

Figure 3 illustrates some obtained results when the trial FR-

IQA algorithms are performed on both an original image ex-

tracted from LIVE and some of its degraded versions.

Figure 4 displays the performance of the trail IQA algo-

rithms with the TID2008 image database. No new training

phase has been performed. This means that shown results are

obtained from the MLIQM technique trained on TrainC1 and

(TrainR1,· · · , TrainR5) sets for, respectively, the SVM classi-

fication step and the SVM regression step. The proposed ap-

Original Image

JPEG distored JP2K distored
MLIQM = 4.671 MLIQM = 2.214
MS-SSIM = 0.985 MS-SSIM = 0.884
VIF = 0.602 VIF = 0.156
VSNR = 16.68 VSNR = 13.52
PSNR = 29.82 dB PSNR = 22.92 dB

GBlur Distored FastFading distored
MLIQM = 3.441 MLIQM = 2.210
MS-SSIM = 0.942 MS-SSIM = 0.513
VIF = 0.302 VIF = 0.014
VSNR = 13.39 VSNR = Inf
PSNR = 22.82 dB PSNR = 16.66 dB

Figure 3. Example of results obtained computing the trial FR-IQA algo-

rithms on an original image (churchandcapitol extracted from LIVE and

its degraded versions by applying JPEG (0.83865 bpp), JPEG2000 (0.194

bpp), Gaussian Blur (σ = 1.565074) and a fast fading process (receiver

SNR=18.9).

proach yields to obtain high SROCC values for most subsets of

TID database. Except for degradation #5, #7, #12, #15, #16 and

#17, MLIQM provides improvement of performance. In addi-

tion, when all subsets are considered, the proposed scheme sig-

nificantly outperforms the trial NR-IQA algorithms, namely MS-

SSIM, VSNR, VIF and PSNR. Degradation #5 and #7 respec-

tively deals with high frequency noise and quantization noise.

Considering the first kind of artefact, the difference of correlation

between the best IQA algorithm (MS-SSIM) and the MLIQM ap-

proach is not statistically significant. This is not true if the second

degradation is highlighted. This degradation can be interpreted

as a loss of color, which induces artificial structural information

(edges) for strong quantization. In that case, structural dissim-

ilarities are high and are perfectly captured using MS-SSIM in-

dex. The used entry features for MLIQM contain many other

features that could blur the information provided by dedicated

structural features. Yet, the correlation difference between the

two approach (MS-SSIM and MLIQM) is small.

Considering compression oriented degradations, except for

degradation #12 (JPEG transmission errors), MLIQM yields an

increase of SROCC values for compression-degraded images. In
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Figure 4. Obtained Spearman rank order correlation coefficient (SROCC) between the predicted DMOS values and the subjective DMOS scores considering

TID2008 database as test set. The type of degradations are described in table 1.

addition, degradation #15 (local block-wise distortions of differ-

ent intensity) can be considered as transmission errors since local

blocks of the image are color degraded. As for degradation #12,

a small correlation difference is noticeable between MS-SSIM

and MLIQM. Degradations #16 and #15, respectively, concern a

change of intensity and of contrast. They cannot be considered

only as a degradation process, but also as a change of the natu-

ralness of images. When analysing the images corresponding to

the considered degradation, visible differences between the ref-

erence image and the degraded versions are not necessarily great.

Nevertheless, for these degradation, a small difference of corre-

lation is between the best IQA algorithm and the MLQIM.

Finally, considering the entire TID database, MLIQM yields

1) a higher correlation rate and 2) a difference with the other trial

IQA schemes statistically significant. In addition, adding more

elements associated to degradation for which MLIQM is less per-

formant, the proposed approach should perform better (since 100

images for those degradations do not seems to reach a relevant

training process). The same final remark formulated for obtained

results on LIVE can be applied to TID : this consistency of im-

provement for subsets as for the entire TID database can be con-

sidered as an indicator of the validity of the proposed approach.

The complexity of the proposed approach relies on the train-

ing phase in order to design both the classification process and

the regression scheme. This phase can (and should) be done of-

fline, as a preprocessing stage. Actually, both SVMs and ν-SVRs

training are of high complexity. Once MLIQM is trained, during

the online stage, its complexity depends on the complexity of fea-

ture extraction process, since the complexity associated to both

classification and regression stage can be neglicted. Even if this

complexity is higher than simple IQA algorithms, it is acceptable

since MLIQIM provides very high correlations obtained with re-

spect to human judgments (and it outperforms IQA algorithms

for some degradation).

Conclusion

In this paper a new approach to design a FR-IQA algorithm

is proposed. This approach is based on a classification process

Degrad # Type of distortion

1 Additive Gaussian noise

2 Additive noise in color components is more intensive

than additive noise in the luminance component

3 Spatially correlated noise

4 Masked noise

5 High frequency noise

6 Impulse noise

7 Quantization noise

8 Gaussian blur

9 Image denoising

10 JPEG compression

11 JPEG 2000compression

12 JPEG transmission errors

13 JPEG2000 transmission errors

14 Non eccentricity pattern noise

15 Local block-wise distortions of different intensity

16 Mean shift (intensity shift)

17 Contrast change

Description of the 17 degradation types within the TID2008

database

such as the human being is supposed to proceed to judge the

quality of an object. To apply the classification process, a vector

of features has been generated. The selected features are chosen

from full-reference image HVS-based features and full-reference

image features, for both of them a reference image is needed.

The compared techniques with the proposed LMIQM

method, are four state-of-the-art FR-IQA methods. The obtained

results shown that LMIQM gives better results and yields a sig-

nificant improvement of the correlation coefficients with the hu-

man judgments.
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