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Abstract

We present a corpus of experimental data from psychome-
tric studies on gamut mapping and demonstrate its use to de-
velop image similarity measures. We investigate whether sim-
ilarity measures based on luminance (SSIM) can be improved
when features based on chroma and hue are added.
Image similarity measures can be applied to automatically select
a good image from a sample of transformed images.
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Introduction

Image transformation algorithms such as gamut mapping
can be adapted to a particular image. But the choice of good
parameters is often far from trivial even for experienced creative
professionals. If more than two parameters have to be chosen, an
extensive manual trial–and–error strategy becomes cumbersome.
So, there is a need for an automatic method to qualitatively as-
sess the outcome of an image transformation with respect to the
original. We will derive such a method from human choices.
The effects of lossy compression or transmission on images have
been studied extensively and reference databases exist [1–5]. In
this context, it arises naturally to derive features from differences
of two images. But image difference features can also be ap-
plied to assess image transformations other than compression or
transmission. Wang et al. [6, 7] introduced the term of structural
similarity (SSIM) for a perceptual difference measure based on
luminance features of two compared images. Barańczuk et al. [8]
predicted the perceived quality of gamut mapping based on im-
age difference features including structural similarity.
There is a large body of gamut mapping studies using the method
of paired comparisons, hence categorical choice information
only, while most of the databases cited above use mean opinion
scores on difference scales. The law of comparative judgement
or conjoint analysis can be used to derive values on a difference
scale from choice data [9–12]. Such a scale value could be use-
ful to make studies based on paired comparison comparable with
studies reporting mean opinion scores. But if choice shall be pre-
dicted, one might also directly design classifiers without deriving
scale values first.
In this paper, we evaluate image difference features and similar-
ity measures in the context of gamut mapping. Our ground truth
is based on paired comparison experiments. Each experiment in-
volved various mappings of an image to target gamuts.
The remaining paper is organised as follows. First, we present a
corpus of study data we plan to make publicly available. Then,
we apply these data in order to develop an image difference mea-
sure. We will compare the indirect approach — deriving a metric
score in order to predict choice based on this score — with a di-
rect classification based on machine learning methods. Results
are summarised and discussed prior to our conclusions.

A database of gamut mapping studies
The studies included in this database were all conducted be-

tween 2006 and 2011. All studies used the experimental method
of paired comparison. Table 1 contains a summary of the num-
ber of images involved and the number of trials (comparisons).
For each study, we recorded

� the original and the transformed images,
� records of choices with anonymised observer ID,
� derived score data for each mapped image,
� a description of the test setup.

At the moment of writing this, we have included twelve studies
with a total of more than 70’000 choices.
In the first four studies, there was only one parameter identifying
the algorithm used [8, 13–15]. The studies denoted by ’Mix-
ing’ segmented images and applied one out of a candidate set
of algorithms for each segment. Different schemes on how to
fuse segments back to an image were compared [16]. In the
conjoint studies, a couple of parameters per transformation al-
gorithm were recorded, including four target gamut sizes [11].

Table 1. A summary of the studies

Name images trials non-tied ties %

Basic 97 5550 5199 351 6.3%

Local Contrast 72 5376 5209 167 3.1%

Image Gamut 65 4087 3698 389 9.5%

Individual 20 8000 8000 0 0.0%

Mixing 1 36 4327 3900 427 9.8%

Mixing 2 36 4816 3659 1157 24.0%

Mixing 3 36 5400 4713 687 12.7%

Mixing 4 50 5320 4869 451 8.5%

Mixing 5 36 4664 3739 925 19.8%

Mixing 6 50 6036 5123 913 15.1%

Conjoint 1 85 3186 2860 326 10.2%

Conjoint 2 95 13068 11401 1667 12.7%

Derivation of scores from choice data
We include scores for each transformed image in the

database. Scores are not only used to apply regression models
predicting choice for images that are not in the database, but
we provide them also to facilitate comparative studies with
image quality databases that use mean opinion scores (MOS) on
difference scales.
All included studies displayed an original and two transformed
images on a computer screen in each trial. Observers were
instructed to either abstain (no abstention possible in Individual
study) if both transformed images seemed equal or else to click
on the image which seemed to be the better representation of the
original.
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The method to derive a score varied depending on the num-
ber of choices per stimulus combination:

� Global score: When several choices were recorded for
each combination of stimuli, a model based on Thurstone’s
case V can be applied to derive a score [9, 10, 12].

� Mixed score: When the number of choices per stimulus
combination was small, mixed regression was applied.
For this, scores based on global performance of an
algorithm were mixed with individualised scores based
on comparisons involving a particular original. Cross
validation methods were used to determine the mixing
proportions [8].

� Conjoint case: In the conjoint case (multiple parameters
per algorithm), a linear model of independent attributes
was used to derive a score, again combined with mixing
global and individualised scores [11].

In the database, we provide the global score, the score based on
each original only and the score based on the mixture of both.

Application of the database
We used the database to develop an image similarity mea-

sure derived not only from luminance features, but also from fea-
tures involving chroma and hue.
As a benchmark for the quality of the image similarity measure,
we did not use prediction of scores, as these are already derived
data. Instead, we used the percentage of correctly predicted ob-
server choices (hit rate). For this, we excluded some choices as a
test set and derived a predictor using the other choices in a sub-
set of the database as a training set. If not declared otherwise,
both subsets included only data taken from the same study. The
choices in the test set had to be predicted. Repetition of this cross
validation process generated statistics of hit rate for a particular
predictor. The hit rate reported here is defined as the number of
correct predictions divided by the number of non-tied choices.
Although it would have been negligible, the denominator was
decreased by the number of tied predictions.
We will now describe the calculation of the features and then
present two methods used as predictors of choice.

Calculation of structural similarity features
The SSIM measure [7] is defined for one channel only, typ-

ically a luminance channel, and consists of three basic features,
one responsible for average luminance differences, and the other
two for contrast and structural differences.

Let x indicate a window around a pixel position in the origi-
nal image X, and let y be a corresponding window in the mapped
image Y. The SSIM formula as we use it reads as follows:

SSIM�X �Y � � l�x�y�
α1

�c�x�y�
α2

�s�x�y�
α3

� (1)

with overlines indicating averaging over all windows and the fol-
lowing luminance feature functions per window:

l�x�y� �
�2μxμy� c1�

�μ2
x �μ2

y � c1�
� (2a)

c�x�y� �
�2σxσy� c2�

�σ2
x �σ2

y � c2�
� (2b)

s�x�y� �
�σxy� c3�

�σxσy� c3�
� (2c)

where α1 � 0, α2 � 0 and α3 � 0 are parameters used to
adjust the relative importance of the three components. The con-
stants are set to the values in [7] here, namely c1 � �0�01L�2,
c2 � �0�03L�2 and c3 �

1
2 c2. The symbols μx and σx denote em-

pirical mean and standard deviation in the sliding window, σxy
is the correlation between corresponding windows. L is the nu-
meric dynamic range of the pixel values e.g. 255 for 8-bit RGB
and 100 for CIELAB, respectively.
Formally, SSIM is defined on an intensity. This does not have to
be the luminance, but could also be chroma – but not hue.

However, we also want to have the possibility to consider
colour related similarities, particularly hue. Therefore, we ex-
tend the SSIM measure in equation (1) by additional features for
hue and chroma shifts:

χSSIM�X �Y � � SSIM�X �Y � � χ�x�y�α4
�h�x�y�

α5
� (3)

The two additional features for chroma and hue are set up
with ci � 0 from the following feature functions per window:

χ�x�y� �
1

c4 �ΔC�x�y�2�1
� (4)

h�x�y� �
1

c5 �ΔH�x�y�2�1
� (5)

The hue and chroma differences ΔH and ΔC can be calculated
from Cartesian chromaticity coordinates a and b as follows:

ΔC�x�y� �
�

a2
x �b2

x �
�

a2
y �b2

y � (6)

ΔH�x�y� �
�
�ax�ay�2��bx�by�2�ΔC�x�y�2 � (7)

The feature functions f �x�y� fulfil the criteria set by [7], namely

1. Symmetry: f �x�y� � f �y�x�;

2. Boundedness: � f �x�y�� � 1;

3. Unique maximum: f �x�y� � 1 if and only if x � y (in dis-
crete representations, xi � yi for all i = 1; 2; . . . N);

We do not consider structural correlations in chroma and
hue since the perception of structural information is mainly gov-
erned by luminance. In order to derive a meaningful hue mea-
sure, a hue preserving colour space has to be used. Here, we use
IPT [17] and DIN6164 [18, 19] as working colour spaces, which
are known to have good hue preserving properties. Hence, we
apply the standard SSIM formula to the luminance coordinate in
the respective working colour spaces.

Method 1: Linear regression on scores
As a first method to predict choices, we applied linear

regression with score as dependent variable to different subsets
of features such as the algorithm ID, three components of
SSIM, as well as features based on chroma and hue described
in the last paragraph (see Table 2) as independent variables. the
chromatic features were calculated in both, IPT and DIN colour
spaces [17–19].

We restrict the optimisation here to finding optimal expo-
nents αi based on the data in our database. We can transform
the problem into a linear system by applying the logarithm to
equation (3) :

αi � log�
1

ci � f �x�y�2�1
���αi ��ci � f �x�y�2� � (8)
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where f �x�y� denotes chroma or hue differences described
above. Note that exponents α4 and α5 are strongly correlated
with the parameters c4 and c5.
Thus, to a good approximation, a change in αi by a factor can
be compensated by a change in ci by the inverse factor. Without
changing the ordering properties of the similarity measure, we
can scale all exponents in equation (3) by an arbitrary factor. In
order to be comparable to the original SSIM, we set the average
of the first three exponents to 1. Furthermore, we adapt the pa-
rameters c4 and c5 after linear regression such that the exponents
α4 and α5 become 1 when using equation (8).

Table 2. Subsets of feature terms used

Feature terms

Subset ID SSIM RGB SSIM IPT SSIM DIN

l�c�s l�c�s χ h l�c�s χ h
1 x

2 xxx

3 xxx

4 xxx x x

5 xxx x

6 xxx x

7 xxx

8 xxx x x

9 xxx x

10 xxx x

Method 2: Support vector classification
Choice can be expressed as classification. We used classi-

fying support vector machines as predictors of choice [20], more
specifically the publicy available implementation of LIBSVM in
version 3.0 [21].
Support vector machines for binary classification need training
data vectors �x1 � � � �xn from input data space X � �

d as well as
their class labels y1 � � �yn� yi � ��1��1�.
Support vector machines find a hyperplane (a high-dimensional
equivalent to a plane), separating a space into two half-spaces
which should each contain only data of the same class. From
all possible separating hyperplanes, the one is selected that
maximises the distance (margin) to the nearest points (support
vectors). The optimisation problem formulated this way is
convex and has therefore only global optima.
The key point is that the distance to the optimal hyperplane
can be expressed using inner products of mapping functions
Φ��x� of the input data. These inner products of mapping
functions are implicitly calculated by Mercer kernel func-
tions: k��xi��x� � �Φ��xi��Φ��x��. A vector �x is labelled �1 if
b�Σn

i�1αiyik��xi��x� � 0, else �x is labelled �1. Here, we used
the linear kernel k��xi��x� � ��xi��x�. Parameters b and �α are
determined in the optimisation process.
Data points on the wrong side of the separating hyperplane can
be allowed to extend the model, but they have to be penalised.
Since calculating Φ��xi� is the same as mapping the data to
a feature space, which can have different dimensionality and
geometry, the separating plane in feature space corresponds
in general to a bent surface in input space. A regularisation
parameter C is introduced, which balances between minimising
curvature of the separating surface and penalisation due to
misclassifications. This way, over-fitting the data can be
avoided. In order to find a robust regularisation parameter C, the
data are split into two partitions, named training and test set. For

a particular parameter setting C � c� c � �� c � 0, the support
vector machine learns a model on the training partition (i.e.
finds a separating hyperplane). The learned model is then used
to predict the choice on the other, the test partition. The cross
validation process is repeated with different partitionings, thus
creating statistics on predicting accuracy for a particular value
of the parameter C. We chose the c � �2k : k � ���4 � k � 4�
with highest median accuracy of predicting choices in the test
sets.

Prediction of choice
Both methods, linear regression and classifying support

vector machines were applied to predict choices based on dif-
ferent subsets of feature terms listed in Table 2. The individual
terms were calculated for both transformed images in a trial rel-
ative to the original image. While scores were predicted for each
transformed image separately by regression models, the respec-
tive data of both images were concatenated in order of presenta-
tion from left to right so as to form the data vector�x in the input
space of the support vector machines. For each subset of feature
terms, a separate machine was trained.

To predict choice from a score, let rai� rbi be the respec-
tive scores for two transformed images in trial i, regardless of
whether calculated from a set of choices or regressed with image
difference features. The choice predicted from scores is then de-
fined as yip � sign�rbi� rai�� yip � ��1�0��1�.
The choice being predicted by support vector machine classifi-
cation is identical to the predicted class label yip � ��1��1�.

Results and discussion
As a quality criterion for both prediction methods we used

the accuracy (hit rate) in predicting choice on data that were not
used in learning or regression (cross validation method). Please
note that the maximal achievable hit rate is usually not 100%, as
contradicting choices are to be expected in the data.
Hit rates for different feature sets should only be compared if
the same data have been used in learning. This was one of the
reasons why we decided not to split data randomly for the results
in Table 3, but in such a way that data from exactly one image
were excluded in each cross validation run. As choice tasks
were repeated, we could also ensure this way that the choice to
be predicted was not already contained in the training set.
When comparing mean hit rates in Table 3, adding the chroma
and hue information almost always improved the mean hit rate
compared to those feature sets including only luminance-based
information. The observation holds for both colour spaces we
used, IPT and DIN.
As a reference hit rate, we include the hit rates when using
scores calculated without cross validation on all data of each
study (last three columns of Table 3). Note that the global
score uses only information on the algorithms we used, while in
the image individualised and mixed scores, information about
images is contained. Feature set 1—the algorithm ID for the
non-conjoint studies and the ID of the target gamut for the
conjoint studies—does not contain information about individual
images, either. For the predictions with regression or support
vector machines in Table 3, information about algorithms as
well as images that were involved was indirectly contained in
the image difference features. Therefore, it is possible to exceed
the hit rate achievable when using the algorithm ID or the global
score alone.
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Table 3. Mean hit rates in cross validation for chosen feature sets compared to Thurstone on all choices

Regression IPT Regression DIN SVM IPT SVM DIN Thurstone / Conjoint

Study Set 3 Set 4 Set 7 Set 8 Set 3 Set 4 Set 7 Set 8 global image mixed

Basic 72.7% 73.8% 72.6% 74.1% 72.2% 73.3% 72.8% 73.4% 71.9% 83.4% 81.7%

Local Contrast 66.3% 67.9% 66.5% 68.2% 66.3% 67.8% 65.6% 66.4% 68.0% 79.4% 79.3%

Image Gamut 68.5% 69.3% 68.3% 68.6% 67.9% 68.0% 66.9% 67.2% 71.2% 79.3% 77.9%

Individual 62.2% 62.0% 60.3% 61.6% 60.6% 60.6% 60.4% 60.4% 61.1% 69.8% 69.8%

Mixing 1 64.3% 63.1% 64.6% 65.6% 61.8% 66.1% 62.8% 64.6% 64.5% 73.8% 73.7%

Mixing 2 66.7% 69.2% 66.9% 70.2% 66.1% 70.4% 65.7% 69.4% 71.5% 65.5% 74.5%

Mixing 3 55.7% 57.8% 57.1% 60.0% 54.7% 62.8% 53.8% 59.1% 61.1% 71.5% 71.5%

Mixing 4 60.4% 60.5% 61.0% 63.0% 61.1% 62.1% 62.2% 64.4% 60.8% 72.7% 72.4%

Mixing 5 58.4% 58.8% 58.1% 60.1% 60.8% 61.6% 59.4% 61.4% 60.0% 65.2% 64.0%

Mixing 6 57.4% 56.1% 57.3% 56.7% 53.8% 57.1% 56.3% 58.2% 57.3% 67.7% 67.3%

Conjoint 1 77.7% 81.0% 78.2% 80.8% 79.3% 81.6% 76.7% 81.0% 78.6% 82.0% 82.1%

Conjoint 2 84.9% 86.8% 85.0% 86.7% 85.2% 87.4% 84.4% 87.2% 86.2% 86.7% 87.6%
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Figure 1. Hit rate distributions of the support vector machine for each of

the features sets in Table 2, data from each original image excluded once

as test set. Feature set 2 corresponds to standard SSIM.

High variability of hit rates between original images (Fig-
ure 1) makes it tricky to derive whether the differences in hit
rates are significant. Furthermore, the number of comparisons
per image is not always identical, not even within one study.

Significance tests with random partitions
We restrict our significance testing to the linear model

here, factorial and hybrid combination of features are discussed
in [?, 22]. We used random partitions of equal size. All
predictors compared used the same randomly created training
and test sets. Due to repetition of trials, identical trials to the
one of which choice should be predicted could be in the training
set. Should this influence the hit rate, all predictors would share
this information.
The ci values in the feature functions used by SSIM were held
constant for the significance tests, and the average of all sliding
windows of the respective feature function’s values was used as
a feature. We learned the coefficients of a linear combination of
feature differences by ordinary linear least squares regression
on randomly selected 90% of the choice data for each study,
using each image-difference-based feature combination listed
in Table 2 as independent variables. With learned coefficients,
we then predicted choice on the remaining 10% of the data. We
repeated this cross validation process 1000 times. MATLAB’s
������ and ���	
����� were then used to test the hypothesis
that the mean hit rates of the different feature sets are equal at a
confidence level of 99%.

We were particularly interested in the differences in hit
rates between regression using only luminance-based features
(l�c�s) and regression using luminance, chroma-based and
hue-based features together (l�c�s� χ�h). Figure 2 shows the
mean of the difference in hit rates between these two feature
sets. Positive values mean adding chroma-based and hue-based
features performs better in this linear model. The error bars
show the 99% confidence interval for differences of means
based on the 1000 repetitions for each study. If zero is included
in this interval, the difference is insignificant at this level.
We used four working colour spaces for the significance tests.
The working colour space abbreviated to LHL was recently
presented as LAB2000HL (Hue Linear) by Lissner and Ur-
ban [22]. Please note that the gamut mapping operations have
not been performed in each of these spaces; we only calculate
the difference features from given mapped images represented
in these spaces. So, our results should not be used to assess the
performance of any of these spaces as working colour space for
mapping images to a target gamut.

First, we used regression on Thurstone’s scale values
mixed from global and individualised values as dependent
variable [8]. In this case, the features based on luminance,
chroma and hue are significantly better for most studies than
those based on luminance only, with the exception of Mixing 1
and 6, see Figure 2(a). We repeated the same cross validation
of linear regression, but used choice expressed as +1 or -1 as
dependent variable. In this setup, the general picture is similar,
see Figure 2(b). The hit rates were comparable to those achieved
with regression on Thurstone’s scale values.
The use of choice predictions from scores or scale values needs
a short discussion here: how close to the original an image is
after gamut mapping does not only depend on the algorithm, but
also on the target gamut size relative to the image gamut size. In
most cases, an image mapped from sRGB to an offset gamut will
look better than an image mapped to a newspaper gamut, as was
experimentally established in the conjoint studies [11]. So, in
order to compare Thurstone scale values or mean opinion scores
from two studies, there should be a normalisation procedure.
As long as there are no identical comparisons contained in both
studies, such a normalisation needs a model on its own. In other
words, without further knowledge, a difference scale should be
considered as valid within one study only, while hit rates on
choices may be accumulated.
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(a) Linear regression on mixed Thurstone scale value
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(b) Linear regression on choice (+1/-1)

Figure 2. Comparing hit rates of luminance-based feature sets with hit rates of feature sets based on luminance, chroma and hue. If values are positive, the

latter perform better.

Achievable hit rates
We used hit rate as an indicator of the accuracy of a model.

Given that observers may make contradicting choices, we won-
dered what the best accuracy could be.
When one ignores that different images were compared and con-
siders only the information about the algorithms involved, all
choices for each algorithm pair can be accumulated as votes.
The best (maximal) hit rate given only information about algo-
rithms can be achieved by predicting for each algorithm pair the
choice the majority of observers has made. We included the cor-
responding hit rate in Table 4. We also calculated the hit rate
that is achievable if the majority procedure is executed for each
original image separately.

Table 4. Mean hit rates achievable (majority hit rates)

Majority per Trials per

Study algorithm image pair image pair

Basic 72.4% 98.6% 0.97

Local Contrast 68.0% 81.8% 2.58

Image Gamut 72.6% 84.7% 2.03

Individual 61.2% 70.1% 40.00

Mixing 1 64.5% 76.0% 7.22

Mixing 2 71.5% 77.0% 10.16

Mixing 3 61.9% 73.7% 8.72

Mixing 4 60.8% 79.0% 3.48

Mixing 5 60.3% 69.4% 6.92

Mixing 6 57.4% 74.9% 3.65

Conjoint 1 95.2% 99.8% � 0�01
Conjoint 2 99.9% 99.9% � 0�01

For the conjoint studies, there were 1536 possible com-
binations of algorithm parameters, each counted as a different
algorithm. The number of algorithms matters, since the number

n of possible image pairs is linear in the number o of originals,
but quadratic in the number a of algorithms: n � o 1

2 a�a� 1�.
One should therefore also consider the average number of
trials per possible pair of transformed images (leftmost column
in Table 4). Values below 1 in that column mean that most
possible combinations were never compared (or the number
of ties matters in this context, e.g. in the Basic study). If
single comparisons are frequent, very few contradictions can
occur at all and the theoretical hit rate approaches 100%. One
workaround could be to count only those pairs where more
than one comparison was made. But in the conjoint studies
there were less than one hundred multiple comparisons out of
thousands left in that case–not enough for a reliable estimation
of the maximal achievable hit rate. For the other studies,
counting only multiple comparisons made a difference of more
than 1% only in the Basic study: the maximal achievable hit rate
in the Basic study dropped from 98.6% to 84.0%.

Optimisation of the similarity measure
As a last result, we calculate hit rates when optimising pa-

rameters of a linear model across all studies in the database. Lin-
ear regressions of the proposed extended similarity measure in
different working colour spaces (WCS) are shown in Table 5.
For the results in Table 5, all non-tied choices of all studies to-
gether were used and regression was performed on scores mixed
within each study as described above.
To be precise, we estimated αi by a linearised version of χSSIM,
assuming that most features f would be near 1, so that f αi �
�1�Δ f �

αi . We then used the approximation log��1�Δ f �
αi� �

�αi �Δ f to estimate the values of αi. For all hue preserv-
ing colour spaces, we see a significant increase in the hit rate
of 2� 3% when adding features based on hue and chroma to
those based on luminance only.
A separate optimisation of the three exponents α1, α2 and α3 in-
creases the hit rate only marginally; thus, with the current data
we can set them all to 1. The performance of the different work-
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ing colour spaces is similar with no clear preference. This means
that SSIM features already that were calculated could be used
and simply extended with the chroma-based and hue-based fea-
tures proposed here.

Influence of experts and lay observers

It is worth noting that algorithm mixture studies 3 and 5
as well as 4 and 6 are paired studies, once with experts in a
laboratory setup (3,4), but also under unknown conditions on
the Internet (5,6). The differences in favour of using the hue and
chroma features are always more significant for the laboratory
setting. Possible explanations are differences in criteria between
experts and lay people or less homogeneous viewing conditions.

Table 5. Influence of keeping some coefficients fixed on hit
rates for χSSIM in different working colour spaces (WCS).
Empty entries mean that the corresponding feature was left
out.

Keeping the mean of luminance-based coefficients at 1

WCS α1 α2 α3 c4 c5 hit rate

RGB 1.29 0.98 0.72 66.4 %

LAB 1.27 0.91 0.83 66.4 %

LAB 1.26 0.93 0.81 0.005 66.9 %

LAB 1.12 0.79 1.09 0.01 67.5 %

LAB 1.12 0.8 1.08 0.01 0.01 67.6 %

IPT 1.37 0.89 0.74 66.4 %

IPT 1.37 0.94 0.68 0.01 67.9 %

IPT 1.21 0.77 1.02 0.008 67.4 %

IPT 1.22 0.82 0.97 0.008 0.008 68.3 %

DIN 1.14 0.96 0.9 66.4 %

DIN 1.14 1.01 0.86 0.012 67.1 %

DIN 1 0.84 1.15 0.013 67.2 %

DIN 1 0.88 1.12 0.013 0.013 67.7 %

LHL 1.23 0.92 0.85 66.5 %

LHL 1.23 0.94 0.83 0.005 66.8 %

LHL 1.09 0.79 1.12 0.01 67.6 %

LHL 1.08 0.81 1.11 0.01 0.01 67.7 %

Setting luminance-based coefficients to 1 as in [7]

WCS α1 α2 α3 c4 c5 hit rate

RGB 1 1 1 66 %

LAB 1 1 1 65.9 %

LAB 1 1 1 0.005 66.2 %

LAB 1 1 1 0.009 67.4 %

LAB 1 1 1 0.009 0.009 67.5 %

IPT 1 1 1 65.7 %

IPT 1 1 1 0.009 67 %

IPT 1 1 1 0.008 67.2 %

IPT 1 1 1 0.008 0.008 68.2 %

DIN 1 1 1 66.3 %

DIN 1 1 1 0.01 67.1 %

DIN 1 1 1 0.011 67.1 %

DIN 1 1 1 0.011 0.011 67.5 %

LHL 1 1 1 66.1 %

LHL 1 1 1 0.004 66.5 %

LHL 1 1 1 0.009 67.5 %

LHL 1 1 1 0.009 0.009 67.6 %

Résumé, conclusions and future work
We presented a database containing choice-based experi-

ments on mapping images of natural scenes to target gamuts.

Accuracy of predicting choices (hit rate) was proposed as a
quantitative criterion for the quality of an image similarity mea-
sure. Maximal achievable hit rate due to contradicting choices
was discussed.

We presented an extension of SSIM with chroma and
hue components. This extended image similarity measure
significantly improved mean hit rates relative to SSIM based
on luminance features alone when evaluated on the presented
database.

We conclude that in the context of gamut mapping, features
based on chroma and hue improve image similarity measure-
ments based on luminance only. We see our contribution as a
first step towards inclusion of colour features into a similarity
measure. The underlying hypotheses about the human visual
system are the subject of [?].

There is still room for optimisation, such as the choice of
working colour space for image similarity measures and the best
terms to model the perception of hue and chroma differences. A
further goal is the verification of the performance of a common
similarity measure for different applications such as image
compression, transmission and gamut mapping. The use of
multiple scales should be evaluated as well. Data for these
purposes are available.

We are interested to include more psychovisual studies
of other researchers in our database and plan to make it
publicly available. In particular, studies are needed which
include a greater variety of chroma and hue differences within
the compared images in order to derive more reliable parame-
ters for the proposed candidates of the structural similarity terms.
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[8] Z. Barańczuk, P. Zolliker, and J. Giesen. Image-individualized
gamut mapping algorithms. Journal of Imaging Science and Tech-
nology, 54(3):953–957, 2010.

[9] L.L. Thurstone. A Law of Comparative Judgment. Psychology
Review, 34:273–86, 1927.

[10] P.G. Engeldrum. Psychometric Scaling: A Toolkit for Imaging Sys-
tems Development. Imcotek Press, Winchester, MA, USA, 2000.
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