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Abstract 

We propose a new method to generate images with a given 
color and texture, in order to visualize the appearance of car 
paints. Unlike current methods, the new method is based on 
visual comparisons of rendered paints with actual physical 
samples. Thus, we optimized the method to maximize the 
appearance match between rendered image and the 
corresponding car paint. In the new method it is possible to set 
accurate numerical values for not only color properties, but 
also for well-defined texture parameters.  

The new method is able to accurately render car paints 
under various light conditions, ranging from purely 
unidirectional, intense spot light to purely diffuse light. We 
show that the latter type of lighting conditions, which is often 
encountered in practical situations, is not well covered by 
existing rendering techniques that are based on BRDF and BTF 
measurements. Compared to existing methods for rendering, 
the proposed method is much faster regarding measurement 
and calculation, it has lower instrument costs and requires less 
data storage. 

Texture in car paints 
In modern car paints, the observed color changes with the 

viewing and illumination geometry. But these paints also show 
another striking visual aspect [1]. When viewed from about a 
meter or less, the color of the paint appears to be not uniform. 
This phenomenon of texture, and various other visual aspects of 
car paints, was described by McCamy in two pioneering 
articles [2][3]. The importance of texture in the visual 
appearance of car paints was recently emphasized by the 
Commission Internationale de l’Eclairage (CIE) [4].  

In our own work, we extended these ideas. We introduced 
new concepts with clear definitions for describing texture [5]. 
Depending on the type of lighting, different aspects of texture 
are visible. Under diffuse illumination, Diffuse Coarseness is 
observed. It is the perceived contrast in the irregular light/dark 
pattern exhibited by car paints viewed under such diffuse 
illumination conditions. But under intense unidirectional 
lighting, the observed texture is completely different. Glint 
Impression is the overall impression of several or many tiny 
light-spots (glints or sparkles) that are strikingly brighter, or 
differently colored, as compared to their surroundings.  

In psychophysical tests we have quantified both texture 
phenomena [5]. Based on this research, and in cooperation with 
BYK Gardner GmbH and Merck KGaA, a new instrument was 
developed that is able to measure not only color with a multi-
angle spectrophotometer, but also both texture parameters 
[6][7]. This instrument is now commercially available from 
BYK Gardner under the name BYK-mac®. It is also actively 
used in our more recent research on color differences and 
texture differences between paint samples [8][9]. 

Previous work on rendering car paint 
Methods and software for 3D rendering of car paints are 

widely available for several years now [10][11]. Although 

many of these methods produce striking images, they are often 
not realistic [12], and the accuracy is not good enough for 
critical applications such as automobile design [13].  

While the traditional approach to rendering utilized ray 
tracing [14], for rendering metallic paints this method is 
computationally too expensive for many applications. More 
recent methods to render color are based on the concept of the 
Bidirectional Reflectance Distribution Function (BRDF). This 
function combines a large number of reflectance values for a 
wide range of illumination and detection angles. Approaches 
where the BRDF is measured require expensive instruments 
and storing large amounts of data. For the latter reason, often 
the measured BRDF is fitted to parametric functions such as the 
Cook-Torrence model [15], or to non-parametric functions [16]. 
Obviously, the fitting functions are only an approximation to 
the measured BRDF. 

Instead of measuring the BRDF some investigators use 
simplified physical models to calculate it. An early example is 
the work of Hanrahan et al. [17][18], whereas Ershov, 
Ďurikovič and co-workers provide a more recent example 
[19][20][21]. However, the “fast model of BRDF of a two-layer 
paint” that is used by Ershov et al. [19], is only a crude 
description of a modern car paint. It assumes that conventional 
absorption pigments and flake pigments occur in separated 
layers, which is very rare in practice. As a consequence, the 
occurrence of sparkles with different degrees of coloring which 
is easily seen in actual car paints is not accounted for in this 
model.  

For rendering texture, a measurement technique similar to 
what is used for the BRDF was introduced by Dana et al. [14]. 
The paint sample is lit by a directional light source and 
photographed from different directions. The resulting images 
are combined in the Bidirectional Texture Function (BTF). This 
technique requires expensive acquisition systems and many 
hours of measurement times [22]. The size of the resulting 
BTFs is considerable, at around a gigabyte. No optimal 
compression algorithm was found yet, which hampers 
industrial applications. 

Instead of using measurements, texture can also be 
simulated by statistically adding highlights to the pre-calculated 
image. This approach was pioneered by Ershov, Ďurikovič et 
al. [23][24][25][26]. With these techniques, impressive 
rendering for car paints can be obtained. A disadvantage of this 
approach is that it requires dozens of parameters.  

For rendering both color and texture, Günther et al. used 
fit functions to the BRDF combined with a modification of 
Ershov’s description of sparkle [12]. In a recent work published 
by Rump et al., the same approach was taken, but sparkle was 
accounted for by measuring the BTF [27]. Although this 
approach leads to impressive simulations of the appearance of 
car paints, it requires measuring and storing ten thousands of 
images for each car paint. Even after compression, this requires 
500 Mb of data. The computation time that is needed in this 
approach is also substantial, making real-time rendering 
difficult to achieve.  
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A new approach to rendering car paints 
We base our color rendering on reflection measurements. 

To avoid excessive computation time and storage costs related 
to using the BRDF, we follow the approach taken by Meyer et 
al. and Dumont-Bècle et al., and fit data from multi-angle 
reflection measurements taken under only a handful of different 
geometries [28][29][30]. This agrees with standard practice in 
automotive and in paint industry, where metallic paints are 
known to be characterized by reflection measurements under 
three different geometries [31][32]. Three more geometries are 
added to also characterize pearlescent coatings [33]. 

With the development of the BYK-mac®, it is now 
possible to use accurate measurement of texture as input to 
render textured surfaces such as car paints. In the development 
of the BYK-mac®, we developed image analysis methods to 
extract coarseness [34] and glint [35] data from digital images 
taken from car paints. With the insights thus developed, we 
investigated how to realize the reverse process, i.e. to generate 
digital images corresponding to a specified texture value. Our 
results for coarseness [34][36] showed that such rendered 
textures may correlate well with visual judgments on the 
corresponding physical samples [37]. In the present work, we 
develop an accurate method to generate digital images of car 
paints, with specified values for both diffuse coarseness and 
glint impression.  

The simplest method to generate textured images is to 
superimpose a textured, grey-valued image over an image with 
a uniform color. A well-known disadvantage of this technique 
is that the color of the resulting, textured image will appear 
different from the color of the original uniform image 
[38][39][40]. The new approach aims at the accurate generation 
of images with predefined color and texture, making it possible 
to independently set the color and texture properties of the 
generated images. 

In order to generate accurate digital images with 
prescribed color and texture, the target image is composed from 
three intermediate images: a grey-scale image of prescribed 
diffuse coarseness value, a grey-scale image of prescribed glint 
impression, and a colored image with the prescribed color. This 
approach has the additional advantage of being able to account 
for the distance between the observer and the painted object, 
because we found that the diffuse coarseness image and the 
glint impression image each require a different method to 
account for the observation distance. 

Generation of grey-scale images with 
prescribed diffuse coarseness 

The core algorithm to generate a grey-scale image with a 
prescribed value c of the diffuse coarseness is based on the 
following stochastic process. A digital image is regarded as a 
two-dimensional array of pixel values. Initially, the digital 
image is filled with zeroes. Its size is taken slightly larger than 
the size ultimately needed.  

A patch is defined as a set of pixel values that are assigned 
to a square-shaped subsection of the total digital image. The 
patch itself does not have to be square shaped, but it can be 
generated in any useful form, such as the form of a point spread 
function. 

The patch is then repeatedly generated on random 
positions in the target image, allowing overlap between the 
patches. Four different parameters define this process: 

size: the size of each patch,  
grey level: the intensity of the patch,  

count: the number of patches that are generated (count is 
the average number of generated patches centered on 
each pixel). 

sparkler: By putting a patch in the image, the values of the 
patch are added to the pre-existing values.  After that, 
the whole pattern is multiplied by the value of the 
sparkler parameter. Subsequently, all pixel values of 
the image are renormalized to ensure no values 
exceed the maximum grey value. 

We found that in order to generate images with a 
prescribed value c of diffuse coarseness, each of these four 
parameters needs to be described by a separate function that 
depends only on the value c. 
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Here, functions f(c), g(c), h(c) and k(c) are introduced. We 

found good results when we used the following expressions for 
these functions: 
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With these definitions, the stochastic algorithm is able to 

generate grey-scale images that are very similar to the digital 
images produced internally by the BYK-mac®.  

This similarity was exploited further by using BYK-mac® 
images taken from the so-called anchor panels described in an 
earlier publication [5]. In these car paint samples the value for 
diffuse coarseness systematically varies from very small to very 
large, whereas the measured reflection curves for these samples 
remain almost constant.  By basing the optimization of the fit 
parameters on BYK-mac® images of these anchor panels, we 
make sure that the generated diffuse coarseness images all refer 
to the same grey color. This is illustrated in Figure 1. 

The values of the parameters Af , Bf through Ck in equation 
(2) were fitted such that the resulting images showed optimum 
similarity with the BYK-mac® images taken from the anchor 
panels. The similarity between generated and measured images 
was numerically expressed in terms of statistical properties of 
the intensity histograms of these images. Our analysis was 
based on the median value, average value, and the 10, 20, 30 up 
to 90 percentile values. The squared sum of differences in each 
of these statistical properties was minimized, resulting in 
optimum values for the parameters Af , Bf through Ck. 

In this way, grey-scale images with prescribed diffuse 
coarseness were generated. In a visual test the accuracy of this 
method was confirmed, as observers were not able to 
distinguish the images produced by the BYK-mac® and those 
generated with the stochastic algorithm. 

Generation of grey-scale images with 
prescribed glint impression 

The core algorithm to generate a grey scale image with 
prescribed value g for glint impression is very similar to the 
core algorithm just described for generating images with 
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prescribed diffuse coarseness. Again, the same four parameters 
are needed, but in this case these parameters obviously depend 
on the prescribed value of glint impression 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

)(
)(
)(
)(

gq
gp
gn
gm

sparkler
count

levelgray
size

    (3) 

 
where in this case for the functions m(g), n(g), p(g), and q(g) 
we found best results when using transformed functions, 
inspired by the Fermi-Dirac distribution function:  
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Very similar to the previous case, the optimum values of 

the parameters Af , Bf through Ck were found by statistically 
comparing the generated images with images measured by the 
BYK-mac® instrument, on the corresponding anchor panels 
(Figure 2).  

Combining colored and textured images  
Each of the textured images (referring to either the diffuse 

coarseness image or the glint impression image) is then 
separately combined with a uniformly colored image. The latter 
image is generated, based on spectrophotometric reflectance 
measurements. With the standard methods from the sRGB 
system, an image is constructed with pixel color values (Rm, 
Gm, Bm) representing the prescribed color. 

The algorithm described above has assigned a grey-value 
G to each pixel of the glint impression image, which obviously 
depends on the geometry γ it refers to. If we denote the G value 
averaged over all pixels as G , then a first correction for color 
differences usually resulting from generating textured images is 
defined by subtracting this average value G from the G value 
of each particular pixel. Normalizing the resulting pixel values 
in the image, we thus define the following intermediate image, 
which is a colored version of the grey-scale glint impression 
image: 
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In this way, the resulting image not only preserves the 

prescribed color properties, but it also has the prescribed glint 
impression value. This is not only realized by subtracting the 
average G  value described above, but also by the way the 
anchor panels were used in optimizing the stochastic algorithm.  

For the diffuse coarseness images, the combination with 
the colored image proceeds in a very similar way. 

 
( )[ ]( )
( )[ ]( )
( )[ ]( )CyxCBMinMaxyxB

CyxCGMinMaxyxG
CyxCRMinMaxyxR

mdsd

mdsd

mdsd

−+=
−+=
−+=

,,0),,(
,,0),,(
,,0),,(

γ
γ
γ

  (6) 

In this case, the parameters R
md

, G
md

 and B
md

 refer to pixel 
values in the red, green and blue channel, generated in the case 
of diffuse lighting of an object with prescribed color. Also here, 
the accuracy of the algorithm was verified by using anchor 
panels. 

Combining all images 
In a final step, all images are combined in a way that best 

corresponds to the lighting situation that needs to be rendered. 
We found that simple linear interpolation gives a good 
rendering of effect paints in realistic conditions. We assume 
that the practical lighting conditions of the object can be 
described by a parameter d. A value d=1 holds in case lighting 
is purely diffuse, while d=0 signifies purely unidirectional 
lighting.  Intermediate values refer to the situations in between 
these two extremes. With linear interpolation, we find 
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In Figure 3, we show results for different combinations of 

values for diffuse coarseness and glint impression. 
 

Figure 1. Anchor panels, photographed under diffuse lighting conditions. 
From top to bottom, anchor panels have decreasing diffuse coarseness 
values. Left: images taken by digital camera from physical samples. Right: 
images produced by the algorithm described in the text. 

 We found that the generated images become even more 
realistic when gloss is accounted for, by adding white reflection 
at and close to the specular angle. Also, images can be 
generated for curved objects as well, by interpolating color and 
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texture values corresponding to the respective geometries. For 
this interpolation, we found that cardinal spline functions gave 
the best results. 

Visual testing the accuracy of rendering 
With visual tests we tested the accuracy of the new 

rendering algorithms for car paints. With teams of observers, 
images of car paints produced by these algorithms were 
compared to physical samples with the same paint.  

Several visual tests were conducted. First, the rendering of 
glints (sparkle) was tested by visually assessing flat samples 
under an intense spot light, and comparing them with images 
rendered on an LCD display. Although the dynamic range of an 
LCD display is not sufficient to render the full dynamic range 
of sparkle, our visual tests show that the rendering algorithm is 
successful in producing images from which paint samples with 
much sparkle can be distinguished from those with less sparkle. 
In another test we rendered curved panels such as shown in 
Figure 4. In this representation, the aspecular angle is 
systematically varied from 0° to 110°. The resulting image 
looks like a strongly curved painted panel. Images like this 
were shown on an LCD display, and compared with cars that 
were painted with the corresponding paints. Obviously, the 
shape of cars is such that a wide range of aspecular angles is 
examined while observing them, and in the curved panel view 
we offer the possibility to examine this range. The cars were 
positioned one after another in an environment resembling a car 
repair bodyshop.  
 

 
Figure 2. Anchor panels, photographed under directional lighting. From 
top to bottom, anchor panels have decreasing glint impression values. 
Left: images taken by digital camera from physical samples. Right: images 
produced by the algorithm described in the text. 

First an initial test was carried out that was meant to determine 
the best values of parameters characterizing the lighting 
conditions surrounding the cars. We found relatively easily that 
the best results were found if we assumed that 70% diffuse and 
30% directional light was present. 
 

Figure 3. Combination of color information with both diffuse coarseness 
and glint impression. While color remains fixed, glint impression increases 
in 8 discrete steps in horizontal direction. Similarly, diffuse coarseness 
increases from bottom to top. 

  

Figure 4. Curved panel view for showing car paints, under different 
ratio’s of diffuse : directional lighting (a) 75:25, (b) 70:30, (c) 30:70. 
(TOY774) 

In the main test, four observers assessed 21 different cars. 
These cars represented different types of car paints and covered 
a wide range of color categories for car paints: metallic grays, 
blue, red, green, purple and black. In this test, it was found that 
the type of texture seen under these lighting conditions is well 
rendered by the algorithms. Car paints with a coarser or a finer 
texture could be well distinguished by the algorithms. 

Rendering of 3D objects 
A small feasibility study was done on using the rendering 

algorithms on 3D objects. Figure 5 shows the results when we 
use a 3D model of the monkey nicknamed Suzanne, which is 
provided with the rendering software package ‘Blender’. These 
images were calculated on a Core™2Quad Q9450 processor 
(2.66 GHz), requiring 1.5 seconds calculation time per image 
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for single threaded C# code. Thus we show that the proposed 
algorithms are feasible also for rendering 3D objects. 

Discussion 
In the proposed method, color and texture are measured in 

a way that is very short in time, and requiring much less 
computing time and data storage when compared with existing 
methods that are based on BRDF and BTF measurements. A 
disadvantage of this new method is that the rendered images are 
less likely to be very accurate for specific complex illumination 
conditions, than when global illumination models are used. 

Our visual tests show that the rendered images compare 
well with physical samples carrying the corresponding car 
paints. These visual tests also show that the new rendering 
method is able to render car paints in different illuminant 
conditions, ranging from purely diffuse to purely directional 
lighting. When simulating practical situations, rendering at 
intermediate lighting conditions was found to be adequate as 
well. It is striking that in the rendering literature, visual 
comparisons between rendered images and the physical objects 
they are supposed to imitate are rarely made. In any case, our 
results confirm that the algorithms introduced here go beyond 
the target that seems to be set for many existing rendering 
techniques, which is to produce images that are visually 
pleasing.  

For example, the images that we produce representing 
diffuse lighting show a type of texture, diffuse coarseness, that 

is hardly even mentioned in literature on rendering methods. 
This type of illumination, which occurs often in practical 
situations, is not adequately represented with BTF 
measurements. Although the number of digital cameras used in 
such measurements can be as large as a few hundred, such as in 
the work of Rump et al.[27], the angular resolution for the 
illumination and detection angles is quite crude when compared 
to the subtle angular effects of metallic flakes that need to have 
the right orientation for incident light to be reflected exactly 
towards the detector. In the rendering method proposed in the 
present work, these difficulties are avoided by characterizing 
the texture in a few measurable quantities, and interpolating 
their values to any required illumination and/or observation 
angle. 

Another major difference between the proposed rendering 
algorithm and existing approaches is that the latter are either 
based on physical measurements or on physical modeling, 
rather than on directly accounting for the color and texture 
appearance as perceived by the human visual system. For 
example, in existing methods, no attempt is made to account for 
the finite resolution of the human eye. In our algorithm, 
calibration by visual examination is crucial at several phases of 
the development, hence ensuring that the visual appearance of 
(color and) texture of the car paint does match the physical 
samples as close as possible. 

 

Figure 5. Monkey Suzanne, rendered as if covered by four commonly used car paints (a) solid color “classic red” from Volvo 60 (2003), (b) three-
layer pearl coating named Azzurro Nuvola, from Alfa Romeo Spider (2009), (c) metallic color Mystique Blue from Chevrolet Avalanche (2009), and (d) 
Shot Silk color, obtained by mixing metallic and pearlescent pigments, used for the Rover 25 (2004). 
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