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Abstract 
 Surface reflectance functions (SRFs) and spectral power 

distributions (SPDs) of illuminants are typically modeled as 

elements in an N-dimensional linear function subspaces. Each SRF 

and SPD is represented by an N-vector and the mapping between 

SRF and SPD functions and an N-dimensional vector assigns N-

dimensional “color” codes representing surface and light 

information.  The N basis functions are chosen so that SRFs and 

SPDs can be accurately reconstructed from their N-dimensional 

vector codes. Typical rendering applications assume that the 

resulting mapping is an isomorphism where vector operations of 

addition, scalar multiplication and component-wise multiplication 

on the N-vectors can be used to model physical operations such as 

superposition of lights, light-surface interactions and inter-

reflection. When N is small, this implicit isomorphism can fail even 

though individual SPDs and SRFs can still be accurately 

reconstructed by the codes. The vector operations do not mirror 

the physical. However, if the choice of basis functions is restricted 

to characteristic functions (that take on only the values 0 and 1) 

then the resulting map between SPDs/SRFs and N-vectors is an 

isomorphism that preserves the physical operations needed in 

rendering. The restriction to bases composed of characteristic 

functions can only reduce the goodness of fit of the linear function 

subspace to actual surfaces and lights. We will investigate how to 

select characteristic function bases of any dimension N (number of 

basis functions) and evaluate how accurately a large set of 

Munsell color chips can approximated as a function of dimension. 

Introduction 
With the development of multimedia technology increasingly 

realistic representations of actual and virtual scenes become 

possible. In a typical application we specify surface and light 

sources in a scene and then model light-surface interactions. The 

resulting image is only as accurate as the information about the 

spectral properties of light and surface used to describe the 

contents of the scene. Most rendering applications use simple RGB 

3-channel codes to represent the spectral properties of lights 

(SPDs) and surface reflectance. They model interaction by addition 

and component-wise multiplication of these 3-vectors. These 

mathematical operations do not correspond to actual light surface 

interactions. In any case, it is not clear exactly what such an RGB 

code represents about a surface or light and there are likely 

advantages of using higher-dimensional representations. 

To reproduce color with hi-fidelity, recent color systems are 

going 4-channel LED, 5-channel DLP, 8-channel printer and so on. 

The resulting color representations are potentially more accurate in 

representing colors once some rule is specified for how code maps 

to display.  

Typical approaches to modeling spectral information includes 

developing subspace models for lighting [1], [2], surface 

reflectance [3], [4], [5], [6] and using these models to model 

human perception [7], [8]. A typical “color constancy” algorithm is 

a method that models lights and surfaces by subspace models and 

attempts to recover the basis coordinates of the surfaces 

independent of those of the illumination [6].  

Most conventional methods of modeling used in this literature 

involve criteria for selection of basis functions and assigning 

weights to surfaces and lights [2], [3], [9]. These models can 

reproduce spectral information to any desired accuracy by 

increasing the number of basis functions used (the dimension N of 

the model) and there is no need to stop at N=3. A central focus of 

this research concerns how accurately such linear models capture 

surface reflectance or illumination as a function of the number of 

basis elements. Previous results show that we can approximate 

surface reflectance very accurately using a computation method 

with eight or more basis functions [3].  

Once the eight basis functions are chosen we can in effect 

replaced each physical surface and light by its model 

representation and that representation can be specified by 

specifying 8 numbers, its coordinates with respect to the basis 

function. That is, the relevant spectral information about a surface 

or natural illumination can be captured by a vector of eight 

numbers, a modest increase over the three numbers used in typical 

rendering applications. Moreover, these eight numbers have a 

known relation to the physical surface represented; an accurate 

reconstruction of the surface reflectance given the eight numbers is 

possible. If the demands on rendering do not require so accurate a 

representation we can represent surfaces by lower-dimensional 

models and still capture useful information about surfaces and 

lights. 

  However, although we can represent light and surface by N-

dimensional vectors the typical rendering operations of addition 

and multiplication of vectors do not correctly model corresponding 

physical operations. If light ( )nεε ,,1 L  is absorbed and emitted by 

surface ( )nσσ ,,1 L , the emitted light does not in general have the 

spectral power distribution corresponding to ( )nnσεσε ,,11 L , at 

least for most choices of basis elements.  

 

 
Fig. 1. Example of the effect of a secondary illuminant with three 

surface reflectance factors. 
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Alternatively put, even though a particular illuminant and a 

particular surface are accurately represented by a common linear 

model, the secondary illumination that results when the first 

illuminant is absorbed and reflected by the surface need not have 

any close representation in the model. Figure 1 shows an example 

of secondary illuminant. Even if a basis of a particular illuminant 

and SRF1 is the same fortunately, light reflected on SRF3 can not 

model as ( )nnσεσε ,,11 L  when a basis function of SRF2 or SRF3 is 

different from that of SRF1. 

  If, however, the choice of basis functions are restricted to 

characteristic functions (defined below) then light-surface 

interaction is correctly represented by component-wise 

multiplication of N-vectors representing light and surface. The 

isomorphism between the N-dimensional function space and the N-

dimensional real function space preserves addition, scalar 

multiplication and component-wise multiplication. 

A characteristic function is a function that takes on only the 

values 0 or 1. It is typically used in mathematics to represent a 

subset of the domain of the function which in this article will 

always be the electromagnetic spectrum. We confine attention a 

constrained set of basis elements each of which is the characteristic 

function for an interval ( )21,λλ  in the visible spectrum. The 

characteristic function is 1 for wavelengths ( )21,λλλ∈  and 

otherwise 0. The characteristic functions in a basis must be 

orthogonal precisely when their intervals are non-overlapping. We 

use the same basis to represent both lights and surfaces. It is easy 

to show that typical rendering operations of vector addition and 

multiplication then correspond to physical superposition of lights 

or surfaces and light-surface interactions. With characteristic 

function bases, it is easy to show that, if light ( )nεε ,,1 L  is 

absorbed and emitted by surface ( )nσσ ,,1 L , the emitted light does 

have exactly the spectral power distribution corresponding 

to ( )nnσεσε ,,11 L . Light-surface interaction is mimicked by 

component-wise multiplication of color codes. Scalar 

multiplication and addition are also preserved as they would be for 

any isomorphism between vector spaces. 

  The key questions are, (1) how do we assign weights (color 

codes) to lights and surfaces with respect to a characteristic 

function basis and (2) how accurately can an N-dimensional 

characteristic function basis capture naturally-occurring lights and 

surface and their interactions? We first propose a Min & Max rule 

to determine wavelength for three basis functions. We focus on 

evaluation of characteristic function models for a large set of color 

reference surfaces, the Munsell Color Chips [10]. 

Surface Reflectance Based on Characteristic 
Functions 
        In general, color response ρ  is described as integral of an 
ambient illuminant )(λE , the surface reflectance of the 

object )(λS , and photoreceptors ( ), 1,2,3
k
R kλ = . They are as 

follows: 

 

.),,2,1()()()(
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        (1) 

 

This equation can be denoted in the vector form,  

 
),,2,1(SER kk mk L==Ρ                             (2) 

M
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(a)                                                 (b) 

Fig. 2. Examples of basis function with n parameters; (a) conventional 
basis function and (b) characteristic function. 

 

Here, if we know the color stimulus obtained under any illuminant, 

we could estimate the surface reflectance of the object by the 

inverse matrix, as computational color constancy. Previous studies 

tried to model without an error using a linear [3], [4], [6] or non-

linear model [9].  

  However, conventional basis functions can be biased by 

themselves because they are extracted the population. And also, it 

faces to the difficulty problem when implementing to surface-light 

interaction in virtual reality [11]. So, we propose a novel basis 

function intended to reproduce surface-light interaction In general, 

the surface reflectance with a basis function is follow, 

 
),,2,1(uaS i

1

i ni
i

L==∑
=                           (3) 

                                 

where 
iu is the principal component (or basis function) a function 

of wavelength. Examples of conventional basis functions and 

proposed characteristic functions are shown in Figure 2. 

Conventional basis functions have a negative or positive intensity 

and cover full wavelength in each basis while characteristic model 

does cover not the entire wavelength and basis function has a 

variable wavelength 
iI  as follow,  
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Therefore, we can represent arbitrary function as,  

 

n21 uuu γβα +++= Lf(x)                      (5) 
 

This is because the each coordinate is orthogonal and non-

overlapping in wavelength. If there are two surface reflectances,  

 

n121111 uuu γβα +++= L(x)f                         (6)  
and.  

  

n222122 uuu γβα +++= L(x)f                       (7) 

 
We can add and multiply each as follow, 

 
n2122112121 u)(u)(u)( γγββαα ++++++=+ L(x)f(x)f    (8) 

 

and. 

n2122112121 u)(u)(u)( γγββαα ×++×+×=× L(x)f(x)f  (9) 
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From these factors, we can easily calculate the scalar value without 

spectra if we have basis functions with an orthogonal and non-

overlapping in wavelength. To select the optimal basis functions, 

first of all, we have to determine which selection of intervals is 

optimal. Here, we face to some difficulties. It is impossible to 

survey for entire data because there are so many spectra in a real 

world. Fortunately, we have much information for surface 

reflectance (SR) and measured lights. In special, we might suppose 

that Munsell Color Chips are the sub-population from spectra of a 

real world. From now, we will make the characteristic function 

using Munsell Color Chips even if real spectra and Munsell chips 

have differences in some ways. We have the assumption that 

surface reflectance is continuous and differentiable. It is plausible 

that the surface reflectance functions of Munsell chips satisfy 

above assumptions. 
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Fig. 3. Examples of surface reflectance and its differential: (a) surface 
reflectance with single rapid change and (b) its differential. 

Min & Max rule for characteristic function 
         Intuitively, places where SSRs change rapidly or where they 

achieve minima or maxima provide useful information about many 

physical surfaces. For example, if there is only a single rapid 

change about 480 nm in arbitrary surface reflectance, its color 

might be a kind of blue or yellow depending on the direction of 

change. Two surface reflectances and their differential values are 

shown in Figure 3. 

         These SSRs are roughly complementary in color even though 

they both change rapidly at the same point. If the derivative has a 

minimum at the selected wavelength is a minimum v, we can 

assume it is a kind of blue color. If the selected wavelength is a 

maximum of the derivative, it might be a kind of yellow color. If 

there is, of course, no or little change in wavelength, it would be a 

gray, white, or black.  

       What if there are two rapid changes in wavelength? In this 

case, we are able to expect to its color using the position of two 

wavelengths with minimum and maximum values. This is a basic 

concept of a Min and Max rule. If there is an arbitrary surface 

reflectance with both minimum value in 480 nm and maximum 

value in 560 nm, we can assume that it might be magenta color. If 

it also changes the position with minimum value to the position 

with maximum value, it might be green color. Now we can obtain 

both minimum and maximum values from a differential result of 

surface reflectance and that will be a characteristic function model 

with N=3 dimension. 

        Figure 4 shows a histogram of two wavelengths with the 
minimum and maximum values for each surface reflectance. The 

maximum frequency is located at the point with about 480 nm and 

550 nm. However, the color difference should be also used to 

consider for human perception. To calculate color difference, we 

used a D65 illuminant and CIE 1931 standard colorimetric 

observer (2 o ). 

 
Fig. 4. Histogram of two wavelengths. 

 
Fig. 5. Distribution of color difference according to first two wavelengths 
in Munsell Color Chips. 
 

        Figure 5 shows distribution of color difference according to 

the first two wavelengths in each of the Munsell Color Chips. 

Those wavelengths are each 490 and 570 nm. Intuitively, the SSRs 

cut at these points can be best approximated by step functions 

generated by a characteristic function basis defined on the intervals 

which begin and end at these wavelength. We will use this 

heuristic max-min method to derive characteristic functions 

models and evaluate their fit to the Munsell Surfaces Set. 

Expanded characteristic function 
        Suppose we have selected wavelengths that determine for our 
choice of characteristic functions characteristic function for the 

case N=3. We can evaluate how well the resulting 3-dimensional 

function space captures the Munsell Set. But now suppose that we 

wish to find out how much better we can do with higher values of 

N. For N=3, we choose a new wavelength to expand a 

characteristic function model, by subdividing one of the existing 

intervals. This subdivision algorithm is fast because the optimum is 

determined from previous results in the every step. We are only 

adding a single new wavelength.  
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Fig. 6. Flowchart of the proposed algorithm. 

 

        It is however an example of a greedy algorithm that can only 

succeed if the best characteristic function basis for N=4 shares 

three cutoff wavelengths with that for N=3. In general, this will not 

be the case. Figure 6 shows the flowchart of proposed algorithm. 

We detected the two points through differential of the surface 

reflectance and color difference for characteristic function with 

N=3 dimension. To determine the next region, we considered the 

variation of a sub-vector. The priority, to quantize the variation, is 

calculated the properties in a sub-vector as follows; the singular 

value, slope of a principal component, amplitude, and standard 

deviation. Next, we find the wavelength with least square error in 

the maximum priority region when it was divided as characteristic 

function with each mean value. If we are not satisfied with that 

result after calculating the color difference, the error can be 

reduced while increasing N. Finally, we will be able to obtain the 

characteristic function for each surface reflectance.    
        Now, how can we assign an N-dimensional characteristic 

function when N is over 3? First of all, we have to consider factors 

such as variation. If there is no variation or no change like Figure 

7(f), there are no difference results of before and after separating. 

Also, if a sub-vector is symmetric like Figure 7(b), the result is 

similar to the mean of a sub-vector. We might assume that Figure 

7(a) and 7(c) are needed to separate among them preferentially. 

Now we can calculate the priority amount based on its variation 

from these facts. The first thing is the variation of population. We 

can consider the variation as computing the standard deviation of a 

sub-vector. Figure 7(a) is superior to Figure 7(c) in comparison of 

their standard deviation. The second thing starts tendency of 

principal component. The principal component indicates the 

representative of total population. Here, a singular value and slope 

of a principal component represents the tendency of the total 

population. Although Figure 7(c) and 7(f) are the same shape and 

length, its slope is an important factor when we need to 

discriminate them. Third thing focuses on the scale of a sub-vector. 

Although a sub-vector has a rapid slope and considerable 

consistency of principal component but it has a low scale as shown 

in Figure 7(d), its priority will be low. The difference between the 

minimum and maximum amplitude of surface reflectance can be 

used to measure this factor. Finally, we defined priority p  as 
follow;  
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Fig. 7. Examples of sub-vector in surface reflectance 

)min()max()tan(
11 xxwp w −×××= θσ

         (10) 

 

where x  is a sub-vector, ( ){ }2
1

1 maxarg xwEw T

w =
=  is the is the 

largest singular value, ( )2))(( xExE −=σ is the standard 

deviation, )tan( 1w is the slope of a principal component, and 

)min()max( xx − is a difference of the minimum and maximum 

amplitude in each sub-vector. 

 

 

 

 

 
  (a)                                                        (b) 

 
  (c)                                                        (d) 

Fig. 8. Surface reflectance based on N-dimension characteristic function; 
(a) original, (b) N=6, (c) N=9, and (d) N=12. 

 

Before determining basis functions, we examined the optimal N-

dimension characteristic function in each surface reflectance. Fig. 

8 shows examples of surface reflectance based on N-dimension 

function. Fig. 8(a) is original surface, 8(b) is 6-dimension, 8(c) is 

9-dimension, and 8(d) based on 12-dimension characteristic 

function. As the dimension is increasing, the results of dimension 

characteristic function are similar to the original surface 

reflectance.  However, if basis functions are varied for each surface 

reflectance, surface-light interaction would not have been 

implemented accurately.  That is because we do not use these 

results in our algorithm.  

Simulations 
        This paper proposed to use four factors denoted as follows: 

ST, SV, SL and AM when the priority of each sub-vector is 

determined by expanding 3-basis function to an N-dimensional 

characteristic function model. ST is here a standard deviation 

across an interval, SV is the largest singular value, SL is an angle 

of principal component, and AM is the amplitude of minimum and 
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maximum values. We could select as the optimal wavelength with 

the least square mean error )(LMSE  in the sub-vector selected by 

these factors. The simulations consist of two methods. One is to 

observe the effect of a factor and the other is to observe the effect 

of multiple factors except each factor in all. From these two 

results, we can confirm the importance of each factor when 

selecting the wavelength. And also, we considered two measures to 

evaluate the performance of each factor as follows: Mean of 

)(MEabEab∆  between the original and the estimated based on 

characteristic. Figure 9 shows the MEab  according to LMSE  
points by one factor. The method with singular value is the best, 

while the method with slope of principal component is the worst 

inMEab. And the method with the amplitude is the best, while the 
method with slope of principal component is the worst in MSE 

between original and the estimated based on characteristic 

function. The slope with method is even worse than bisection 

method. The histogram of color difference according to 

characteristic function with N-interval is shown in Figure 9. As N 

is increasing, the mean value of Eab∆  is smaller and its gravity 

shifts to the left side. The smaller errors than one were counted as 

one in histogram in Figure 10. 

 

  
Fig. 9. Mean of Eab∆  according to LMSE  points by each factor. 

 
Fig. 10. Histogram of color difference according to N-characteristic 
function. 

 

 

 

 

 

 

 

(a) 

(b) 

Fig. 11. Application of real world data (a) Surface reflectance of 
CHITTKA and (b) first two wavelengths. 

 

We applied the proposed method to the data of surface reflectance 

[12] including flowers and leaves in a real world. We will be able 

to evaluate the proposed method as applying this surface 

reflectance. Real data are not also rougher than that of Munsell 

color chips but include much more the noise in Fig. 11(a). 

However, first two wavelengths are indicated in the special 

wavelength as shown in Fig 11(b). This might be because these 

data have a similar feature such as flowers, while we could confirm 

they distributed like the Gaussian shape in Munsell color chips. In 

special, we can find the minimum first two wavelengths though 

calculating color difference in real surfaces and lights [12].  

Conclusions 
        This paper proposed a novel set of basis functions for linear 

models of surface reflectance. The vector of weights in a linear 

model of surfaces or lights is effectively a representation of 

particular surfaces or light. If we constrain the choice of basis 

functions to be orthogonal characteristic functions then ordinary 

addition and multiplication of vectors mirrors the physical 

superposition of lights and surfaces and light-surface interaction. 

Normal rendering computations are then physically correct. We 

developed a heuristic algorithm to select basis elements based on 

four factors that characterize the local shape and variation of SSRs 

or SPDs: SV, ST, SL, and AM. We evaluated the algorithm on the 

Munsell Color Chips and selected daylights. We are able to 

reproduce color accurately in surface-light interaction by fixing 
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optimal wavelengths to determine basis functions. Moreover, we 

can readily scale the precision of the representation with ease. The 

representation for N=6 for example has the three characteristic 

functions for N=3 as its first three characteristic functions. This 

nested structure allows us to carry out rendering using very 

accurate representations of surface and light and project the result 

to the N=3 case that matches a display device. In future work, we 

plan human psychophysical experiments evaluating the proposed 

representations. 
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