
Fast Non-Iterative PCA computation for spectral image
analysis using GPU

Jukka Antikainen1, Markku Hauta-Kasari1, Timo Jaaskelainen2 and Jussi Parkkinen1, School of Computing1, Department of
Physics and Mathematics2, University of Eastern Finland, Finland.

Abstract
In this study, we implement a fast non-iterative Principal

Component Analysis computation for spectral image analysis
by utilizing Graphical Processing Unit GPU. PCA inner
product computation efficiency between Central Processing
Unit CPU and GPU was examined. Performance was tested by
using spectral images with different dimensions and different
PCA inner product image counts. It will be shown that the GPU
implementation provides about seven times faster PCA
computation than the optimized CPU version. Difference to the
commonly used scientific analysis software Matlab is even
higher. When spectral image analysis is needed to make in real-
time, CPU does not offer the necessary performance for larger
spectral images. Therefore, powerful GPU implementation is
needed.

Introduction

Principal Component Analysis (PCA) is commonly used in
spectral data analysis [1,4]. Usually PCA computation is not so
heavy to compute, but when it is needed to do in real-time,
CPU computation efficiency is not enough. For example, when
measuring is done on the industrial line with a spectral camera,
the spectral image analysis must be fast and efficient. Therefore
the GPU computation can be taken into consideration.

The graphical processing unit (GPU) was primary
developed for gamers use. However the power of the GPU was
also expanded for the scientific use and now its exploitation is
rapidly increasing in many complex computational tasks [2, 3,
5, 6, 7].

One GPU card can contain several hundreds of streaming
processors with thousands of threads which can be utilized to
concurrent calculations. This enables very high speed
computation for parallel tasks. The latest GPU graphics cards
can achieve hundreds of GFlops per second computation power.
The GPU computation unit Tesla S1070 can achieve massive 4
TFlops of computation power by utilizing four GPU cards in
one processing unit. Therefore it is very reasonable to be used
in scientific computations.

This paper will show how the non-iterative Principal
Component Analysis is performed and how it is implemented in
the GPU. Implementation performance is tested by using two
different GPU cards. Results are compared with highly
optimized CPU computation and to the generally used scientific
computation tool Matlab.

Principal Component Analysis for Spectral
Images

The general implementation of the PCA algorithm for the
spectral images is as follows. One spectrum s from the spectral
image is defined as

() () () (){ } ,λsλsλs=λs T
n…21 (1)

where n is equal to the number of wavelengths in the spectral

image, λ is the wavelength component and T is a matrix
transpose. The spectral image, which is normally defined in 3D
form, has to be transformed. The spectral image is transformed
from 3D-spectral image to 2D-spectral image to column wise
order where one pixel wavelengths of the spectral image are
forming one column of the matrix S

() ()

() ()

,

λsλs

λsλs=S

nmn

m

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

1

111

(2)

where m is the number of pixels in an image. After the spectral
image is transformed to 2D-image, correlation matrix R is
computed as follows

R= 1
m

SS T . (3)

Since the correlation matrix is formed, eigenvalues and
eigenvectors (PCA components) can be computed by solving
the following equation

σΦ,=RΦ (4)

where Ф is the matrix of eigenvectors as columns and σ is the
unity matrix with eigenvalues in diagonal. Calculated
eigenvectors are sorted into decreasing order by using
information from the eigenvalues. Eigenvector which
corresponds to the highest eigenvalue corresponds to the mean
vector of the spectral image. The second highest eigenvector is
orthogonal to the first one and it describes the second best
approximation to the spectral image and so on. These
eigenvectors forms the base of the PCA components. A wanted
number η of the PCA components are selected from the base
vectors B.

() ()

() ()

.

1

111

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

nηη

n

λbλb

λbλb=B

(5)

Inner product images are calculated by using selected

components and transformed 2D-spectral image with following
equation

P= BT S. (6)

It is easy to see from these equations that there are a
couple of parts in the PCA computation which can be computed

554 ©2010 Society for Imaging Science and Technology

parallel and efficiently by using GPU. First part is the
correlation matrix and the second part is inner product image
computation which is based on matrix multiplication.

GPU Architecture and Programming Model

The efficiency of GPU computation in parallel tasks is
based on different architecture compared to the CPU's
architecture. In Figure 1, the architectures of CPU and GPU are
represented. In the GPU, there are multiple streaming processor
units and each unit contains various registries which are very
fast to use. Each streaming processor uses the same global GPU
memory and the same program can be executed with all the
processors simultaneously.

Compared with the CPU architecture, it is clear that the
GPU architecture is developed for highly parallel and multi
threaded computational tasks. Therefore it is reasonable to use
GPU for parallel computational tasks rather than CPU.

Figure 1. CPU and GPU architectures. [8]

The programming model and the memory management in

GPU is different than in CPU. In GPU, the data processing is
divided into grids, blocks and multiple threads which are
demonstrated in Figure 2. First the computation data is divided
into the grid of blocks. Each block contains multiple threads
which are executed parallel. Each thread has its own private
memory and each block has its own memory which all threads
in the block can use. Also all the threads can use the same
global shared memory of the GPU card. [8]

Figure 2. Grid with thread blocks [8]

Because of the different GPU programming model, all
computation algorithms should be developed and planned to
work in suitable approach to achieve good efficiency. Figure 3
demonstrates the basic idea of matrix multiplication in GPU
where matrices are computed by using N x N blocks. Each
block with N2 threads computes one sub block of the result
matrix. Each thread computes only one value of one sub block.
Therefore matrix multiplication can be parallelized very
efficiently in GPU.

Figure 3. The basic method of matrix multiplication in GPU. [8]

Matrix multiplication can be also computed by using

highly optimized NVIDIA CUBLAS library [9]. This library is
based on very commonly used and efficient BLAS (Basic
Linear Algebra Subprograms) library [11]. The CUBLAS
library includes many other useful mathematical functions
which are optimized for the GPU computation.

GPU Implementation of Principal
Component Analysis

Because of the fast matrix multiplication, the calculation
of the correlation matrix is highly efficiency. The same method
is used in the calculation of inner product images. These parts
are the most time consuming tasks of the PCA computation for
large spectral images. In Figure 4, one example of PCA inner
product image computation is explained with m x n x 32
dimensional spectral image where the count of inner product
images is reduced to 16.

Some parts are calculated in the GPU and some parts in
the CPU. First the spectral image is converted to the 2D-
spectral image and it is loaded into the graphic card's memory.
Correlation matrix R is calculated (Eq. 3) by using 16 x 16
blocks. After the computation of the correlation matrix, the
eigenvectors and the eigenvalues are calculated with CPU by
using highly optimized LAPACK library [10].

Efficiency for eigenvector computation between the GPU
and the CPU was evaluated. With Quad-core Xeon 3 GHz CPU,
eigenvectors and eigenvalues were calculated in 0.37 ms when
it took 0.40 ms with Quadro FX 3700 GPU. In this low
dimensional 32 x 32 matrix case, the CPU algorithm works
little faster than GPU implementation. Therefore CPU
computation was used. Computation time difference for smaller
matrices would be even more because of the memory transfers
between the graphics card and the CPU. If larger matrices are

CGIV 2010 Final Program and Proceedings 555

used, the GPU implementation for the eigenvectors and the
eigenvalues can be taken in consideration.

Algorithm for PCA computation and data
transfers between the CPU main memory and
the GPU memory

First the spectral image is loaded in the main memory
from the hard disk or directly from the spectral camera and then
the converted 2D spectral image is transferred to the GPU
memory. Then the correlation matrix is computed in the GPU
and the result matrix is transferred to the CPU where
eigenvectors Ф and eigenvalues σ are calculated by using
LAPACK. A wanted number of the PCA components are
transferred back to the GPU and the inner product images are
calculated. After inner product image calculation, images can
be returned to CPU or image processing can be continued in the
GPU. Next part shows the memory transactions between the
CPU and the GPU.

All variables with a subscript index are defined in the GPU

memory. Otherwise the variable is defined in the main memory
of the CPU.

 Algorithm Memory processing
1. S = spectral image (CPU)
2. Sd = ConvertTo2D(S) (CPU → GPU)
3. Rd = (1/m)SdSd

T (GPU)
4. R = Rd (GPU → CPU)
5. [Ф, σ] = SolveEig(R) (CPU)
6. Cd = Ф(1:η) (CPU → GPU)
7. Pd = Cd

TSd (GPU)
8. PP = ConvertTo3D(Pd) (GPU → CPU)
9. process result PP (CPU/GPU)

If steps 5 to 7 are made in GPU, memory transfers
between CPU and GPU can be reduced. Still in the small
dimensional case it is still better to calculate eigenvectors and
eigenvalues in the CPU and do the data transfers between GPU
and CPU.

Figure 4. PCA inner product image calculation process for 32 dimensional spectral image

Results

The calculation program with C++ language was done by
utilizing Visual Studio C++ 2005. To achieve optimized CPU
code, source code was compiled by using efficient Intel C++
compiler which includes very good optimizations for the Intel
processors. Actual GPU utilization was done by using NVIDIA
CUDA 2.0 software library. GPU codes were compiled with
NVIDIA compiler.

For the GPU computation, 16 x 16 block size with 256
threads was selected excluding the case where 8 PCA inner
product images were computed. In that case, used block size
was 8 x 8 with 64 threads. When using 16 x 16 block sizes in
the GPU computation, the dimensions of the spectral image
should be the factor of 16. Therefore we need to add a padding
of zeros to the spatial and the spectral axis of the spectral image
to achieve correct division if it is needed. This has no
significant effect on the speed of our implementation.

PCA calculation was tested with different sizes of spectral
images which were formed from the same spectral image. The
formation of smaller spectral images was done by resizing the

original image on spatial and spectral domains. The original
size of the spectral image and its first six calculated PCA
components are visualized in Figure 5. The spatial size of the
spectral image was 800 x 800 pixels and the wavelength area
was 31 dimensional from 420 nm to 720 nm by 10 nm steps.
Therefore one extra wavelength channel was added to achieve
32 spectral dimensions which is needed for the efficient
computation. First nine calculated inner product images from
the spectral image are displayed in Figure 6.

The correlation between calculation times and the number
of inner product images were measured. CPU and GPU
calculation times were measured with Quad-core Intel Xeon
3GHz processor, NVIDIA Quadro FX 3700 and NVIDIA
GeForce GTX280 graphics cards. Efficiency of the Matlab
2008a was also measured. NVIDIA Quadro FX 3700 uses 112
parallel processor cores with 512 MB of graphics memory with
51.2 GB/sec of memory bandwidth. The GeForce GTX280 uses
240 parallel processor cores with 1GB of graphics memory
with 141.7 GB/sec of memory bandwidth which is almost three
times faster than in Quadro FX 3700.

556 ©2010 Society for Imaging Science and Technology

Figure 5. The sample spectral image and the first six calculated PCA components.

Figure 6. First nine PCA inner product images.

CGIV 2010 Final Program and Proceedings 557

From the Table 1, we can see that PCA inner product
image computation in the GPU is very efficient in compared
with highly optimized multi threaded C++- version and Matlab.
This can be also seen from Figure 7, where computation time
was measured from different sizes of spectral images with 8, 16
and 32 inner product images.

All computation times has been measured by using a timer
which is provided by CUDA library and the timer was started
after the spectral image was loaded in the main memory to
minimize the effect of the hard disk.

Table 1. Computation times of 32 PCA inner product images with different dimensional spectral images in milliseconds
Dimensions Size in MB Matlab Xeon 3GHz

(optimized)
Quadro FX 3700 GeForce GTX280

80 x 80 x 32 0.78 18.8 10.87 4.0 2.6

160 x 160 x 32 3.13 64.1 24.2 7.5 5.4

240 x 240 x 32 7.03 143.8 53.0 14.6 8.6

320 x 320 x 32 12.50 251.6 94.3 23.2 14.9

400 x 400 x 32 19.53 395.3 147.7 35.7 22.7

480 x 480 x 32 28.13 567.2 215.1 50.1 33.0

560 x 560 x 32 38.28 768.8 294.1 67.0 43.5

640 x 640 x 32 50.00 1006.3 378.3 88.2 57.9

720 x 720 x 32 63.28 1273.4 480.5 109.6 71.4

800 x 800 x 32 78.13 1568.8 615.1 135.2 89.5

Figure 7. Computation times for the different number of PCA inner
product images by using different computation devices.

Figure 8. Computation speedups for different computation devices

From Figure 7, we can see that computation times raise

very high with Matlab and even with C-program for larger
matrices. Computation time for the largest test image is about 7
times faster in GTX280 than in CPU which can be seen from
the Figure 8. By using Matlab, difference to GTX280 is over 17
times faster. Differences between Quadro FX 3700 and
GTX280 cards are not so massive.

The Results show that when the real-time (25fps)
computation is needed, CPU can only process 160x160x32
dimensional spectral images, while GTX280 card can process
480x480x32 dimensional spectral images. The spatial size of
the spectral image which CPU can compute on real-time is nine
time smaller than the spectral image which GPU can process on
real-time. This result is very good for this implementation.

Discussion

We have developed and tested a very high performance
implementation of PCA for spectral image analysis. Speed of
the computation was tested with different dimensional spectral
images. With GPU, we can achieve real-time computation for
480x480x32 dimensional spectral image when CPU can only
achieve real-time performance for 160x160x32 dimensional
spectral image. This is very good and an important result for
this research and for our future work.

We have started to implement real-time PCA computation
for microscopy surgery camera video which is used in brain
surgeries. The video data can contain three or more channels.
Therefore this study is relevant to the future studies. Also
spectral image estimation from the RGB-video will be
examined by utilizing the efficiency of the GPU.

558 ©2010 Society for Imaging Science and Technology

References
[1] J. P. S. Parkkinen, J. Hallikainen and T. Jaaskelainen,

“Characteristic spectra of Munsell colors”, Journal of Optical
Society of America, Vol. 6, No. 2/February 1989

[2] Julius Ohmer, Frederic Maire and Ross Brown, ”Implementation
of Kernel Methods on the GPU”, in Proceedings of the Digital
Image Computing on Techniques and Applications, 2005

[3] M. Andrecut, ”Parallel GPU Implementation of Iterative PCA
Algorithms”, Journal of Computational Biology, 2008.

[4] Martinkauppi, B., Lehtonen, J. and Parkkinen, J.: “Near-infrared
images of skin”, CGIV 2008/ MCS'08, 4th European Conference
on Colour in Graphics, Imaging, and Vision, 10th International
Symposium on Multispectral Colour Science, Terrassa-Barcelona,
España, June 9-13, 2008, pp. 508-511, ISBN 978-0-89208-2626.

[5] Nathan Bell and Michael Garlandy, “Efficient Sparse Matrix-
Vector Multiplication on CUDA”, NVIDIA Technical Report
NVR- 2008-004, Dec. 2008.

[6] Youquan Liu; Xuehui Liu; Enhua Wu, “Real-time 3D fluid
simulation on GPU with complex obstacles”, Computer Graphics
and Applications, Proceedings of 12th Pacific Conference, 6-8
Oct. 2004 Page(s): 247 - 256, 2004.

[7] Ek, L. A., Vistnes, R., and Gundersen, O.E., “Animating
physically based explosions in real- time”, In Proceedings of the
5th international Conference on Computer Graphics, Virtual
Reality, Visualisation and interaction in Africa (Grahamstown,

South Africa, October 29 - 31, 2007) S. N. Spencer, Ed.
AFRIGRAPH '07. ACM, New York, NY, 61-69.

[8] NVIDIA CUDA. CUDA Programming Guide 2.3.1, August, 2009,
NVIDIA Corporation, http://www.nvidia.com/

[9] Documentation for CUDA BLAS (CUBLAS) Library, March,
2008, NVIDIA Corporation, http://www.nvidia.com/

[10] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen. LAPACK Users' Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

[11] J. Dongarra, Basic Linear Algebra Subprograms Technical Forum
Standard, International Journal of High Performance Applications
and Supercomputing, 16(1) (2002), pp. 1-111, and International
Journal of High Performance Applications and Supercomputing,
16(2), pp. 115—199, 2002.

Biography
Jukka Antikainen received his M.Sc. degree in Computer Science

in 2006 from the University of Kuopio, Finland. The subject of the
master thesis was parallelization of matrix operations. Currently he is
working with his doctoral thesis with the School of Computing at the
University of Eastern Finland. His thesis is concerning spectral color
research in industrial applications.

CGIV 2010 Final Program and Proceedings 559

