
Fast Non-Iterative PCA computation for spectral image 
analysis using GPU 

 
Jukka Antikainen1, Markku Hauta-Kasari1, Timo Jaaskelainen2 and Jussi Parkkinen1, School of Computing1, Department of 
Physics and Mathematics2, University of Eastern Finland, Finland. 

 
 
 
 

Abstract 
In this study, we implement a fast non-iterative Principal 

Component Analysis computation for spectral image analysis 
by utilizing Graphical Processing Unit GPU. PCA inner 
product computation efficiency between Central Processing 
Unit CPU and GPU was examined. Performance was tested by 
using spectral images with different dimensions and different 
PCA inner product image counts. It will be shown that the GPU 
implementation provides about seven times faster PCA 
computation than the optimized CPU version. Difference to the 
commonly used scientific analysis software Matlab is even 
higher. When spectral image analysis is needed to make in real-
time, CPU does not offer the necessary performance for larger 
spectral images. Therefore, powerful GPU implementation is 
needed. 

 
Introduction 

Principal Component Analysis (PCA) is commonly used in 
spectral data analysis [1,4]. Usually PCA computation is not so 
heavy to compute, but when it is needed to do in real-time, 
CPU computation efficiency is not enough. For example, when 
measuring is done on the industrial line with a spectral camera, 
the spectral image analysis must be fast and efficient. Therefore 
the GPU computation can be taken into consideration. 

The graphical processing unit (GPU) was primary 
developed for gamers use. However the power of the GPU was 
also expanded for the scientific use and now its exploitation is 
rapidly increasing in many complex computational tasks [2, 3, 
5, 6, 7].  

One GPU card can contain several hundreds of streaming 
processors with thousands of threads which can be utilized to 
concurrent calculations. This enables very high speed 
computation for parallel tasks. The latest GPU graphics cards 
can achieve hundreds of GFlops per second computation power. 
The GPU computation unit Tesla S1070 can achieve massive 4 
TFlops of computation power by utilizing four GPU cards in 
one processing unit. Therefore it is very reasonable to be used 
in scientific computations. 

This paper will show how the non-iterative Principal 
Component Analysis is performed and how it is implemented in 
the GPU. Implementation performance is tested by using two 
different GPU cards. Results are compared with highly 
optimized CPU computation and to the generally used scientific 
computation tool Matlab. 

 
Principal Component Analysis for Spectral 
Images 

The general implementation of the PCA algorithm for the 
spectral images is as follows. One spectrum s from the spectral 
image is defined as 
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where n is equal to the number of wavelengths in the spectral 

image, λ is the wavelength component and T is a matrix 
transpose. The spectral image, which is normally defined in 3D 
form, has to be transformed. The spectral image is transformed 
from 3D-spectral image to 2D-spectral image to column wise 
order where one pixel wavelengths of the spectral image are 
forming one column of the matrix S 
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where m is the number of pixels in an image. After the spectral 
image is transformed to 2D-image, correlation matrix R is 
computed as follows 

 

R= 1
m

SS T .   (3)

Since the correlation matrix is formed, eigenvalues and 
eigenvectors (PCA components) can be computed by solving 
the following equation 

 

σΦ,=RΦ   (4)

 
where Ф is the matrix of eigenvectors as columns and σ is the 
unity matrix with eigenvalues in diagonal. Calculated 
eigenvectors are sorted into decreasing order by using 
information from the eigenvalues. Eigenvector which 
corresponds to the highest eigenvalue corresponds to the mean 
vector of the spectral image. The second highest eigenvector is 
orthogonal to the first one and it describes the second best 
approximation to the spectral image and so on. These 
eigenvectors forms the base of the PCA components. A wanted 
number η of the PCA components are selected from the base 
vectors B. 
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Inner product images are calculated by using selected 

components and transformed 2D-spectral image with following 
equation 

 

P= BT S.   (6)

It is easy to see from these equations that there are a 
couple of parts in the PCA computation which can be computed 
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parallel and efficiently by using GPU. First part is the 
correlation matrix and the second part is inner product image 
computation which is based on matrix multiplication.  

 
GPU Architecture and Programming Model 

The efficiency of GPU computation in parallel tasks is 
based on different architecture compared to the CPU's 
architecture. In Figure 1, the architectures of CPU and GPU are 
represented. In the GPU, there are multiple streaming processor 
units and each unit contains various registries which are very 
fast to use. Each streaming processor uses the same global GPU 
memory and the same program can be executed with all the 
processors simultaneously. 

Compared with the CPU architecture, it is clear that the 
GPU architecture is developed for highly parallel and multi 
threaded computational tasks. Therefore it is reasonable to use 
GPU for parallel computational tasks rather than CPU.  

 

 
Figure 1. CPU and GPU architectures. [8] 

 
The programming model and the memory management in 

GPU is different than in CPU. In GPU, the data processing is 
divided into grids, blocks and multiple threads which are 
demonstrated in Figure 2. First the computation data is divided 
into the grid of blocks. Each block contains multiple threads 
which are executed parallel. Each thread has its own private 
memory and each block has its own memory which all threads 
in the block can use. Also all the threads can use the same 
global shared memory of the GPU card. [8] 

 

 
 
Figure 2. Grid with thread blocks [8] 

Because of the different GPU programming model, all 
computation algorithms should be developed and planned to 
work in suitable approach to achieve good efficiency. Figure 3 
demonstrates the basic idea of matrix multiplication in GPU 
where matrices are computed by using N x N blocks. Each 
block with N2 threads computes one sub block of the result 
matrix. Each thread computes only one value of one sub block. 
Therefore matrix multiplication can be parallelized very 
efficiently in GPU.  

 

 
Figure 3. The basic method of matrix multiplication in GPU. [8] 

  
Matrix multiplication can be also computed by using 

highly optimized NVIDIA CUBLAS library [9]. This library is 
based on very commonly used and efficient BLAS (Basic 
Linear Algebra Subprograms) library [11]. The CUBLAS 
library includes many other useful mathematical functions 
which are optimized for the GPU computation. 

 
GPU Implementation of Principal 
Component Analysis 

Because of the fast matrix multiplication, the calculation 
of the correlation matrix is highly efficiency. The same method 
is used in the calculation of inner product images. These parts 
are the most time consuming tasks of the PCA computation for 
large spectral images. In Figure 4, one example of PCA inner 
product image computation is explained with m x n x 32 
dimensional spectral image where the count of inner product 
images is reduced to 16. 

Some parts are calculated in the GPU and some parts in 
the CPU. First the spectral image is converted to the 2D-
spectral image and it is loaded into the graphic card's memory. 
Correlation matrix R is calculated (Eq. 3) by using 16 x 16 
blocks. After the computation of the correlation matrix, the 
eigenvectors and the eigenvalues are calculated with CPU by 
using highly optimized LAPACK library [10].  

Efficiency for eigenvector computation between the GPU 
and the CPU was evaluated. With Quad-core Xeon 3 GHz CPU, 
eigenvectors and eigenvalues were calculated in 0.37 ms when 
it took 0.40 ms with Quadro FX 3700 GPU. In this low 
dimensional 32 x 32 matrix case, the CPU algorithm works 
little faster than GPU implementation. Therefore CPU 
computation was used. Computation time difference for smaller 
matrices would be even more because of the memory transfers 
between the graphics card and the CPU. If larger matrices are 
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used, the GPU implementation for the eigenvectors and the 
eigenvalues can be taken in consideration.  

 
Algorithm for PCA computation and data 
transfers between the CPU main memory and 
the GPU memory 

First the spectral image is loaded in the main memory 
from the hard disk or directly from the spectral camera and then 
the converted 2D spectral image is transferred to the GPU 
memory. Then the correlation matrix is computed in the GPU 
and the result matrix is transferred to the CPU where 
eigenvectors Ф and eigenvalues σ are calculated by using 
LAPACK. A wanted number of the PCA components are 
transferred back to the GPU and the inner product images are 
calculated. After inner product image calculation, images can 
be returned to CPU or image processing can be continued in the 
GPU. Next part shows the memory transactions between the 
CPU and the GPU.  

All variables with a subscript index are defined in the GPU 

memory. Otherwise the variable is defined in the main memory 
of the CPU. 

 
 Algorithm  Memory processing 
1. S = spectral image (CPU) 
2. Sd = ConvertTo2D(S)  (CPU → GPU) 
3. Rd = (1/m)SdSd

T  (GPU) 
4. R = Rd   (GPU → CPU) 
5. [Ф, σ] = SolveEig(R)   (CPU) 
6. Cd = Ф(1:η)   (CPU → GPU) 
7. Pd = Cd

TSd   (GPU)  
8. PP  = ConvertTo3D(Pd) (GPU → CPU) 
9. process result PP  (CPU/GPU) 

 
 

If steps 5 to 7 are made in GPU, memory transfers 
between CPU and GPU can be reduced. Still in the small 
dimensional case it is still better to calculate eigenvectors and 
eigenvalues in the CPU and do the data transfers between GPU 
and CPU. 

 

 
Figure 4. PCA inner product image calculation process for 32 dimensional spectral image 
 

 
Results 

The calculation program with C++ language was done by 
utilizing Visual Studio C++ 2005. To achieve optimized CPU 
code, source code was compiled by using efficient Intel C++ 
compiler which includes very good optimizations for the Intel 
processors. Actual GPU utilization was done by using NVIDIA 
CUDA 2.0 software library. GPU codes were compiled with 
NVIDIA compiler.  

For the GPU computation, 16 x 16 block size with 256 
threads was selected excluding the case where 8 PCA inner 
product images were computed. In that case, used block size 
was 8 x 8 with 64 threads. When using 16 x 16 block sizes in 
the GPU computation, the dimensions of the spectral image 
should be the factor of 16. Therefore we need to add a padding 
of zeros to the spatial and the spectral axis of the spectral image 
to achieve correct division if it is needed. This has no 
significant effect on the speed of our implementation. 

PCA calculation was tested with different sizes of spectral 
images which were formed from the same spectral image. The 
formation of smaller spectral images was done by resizing the 

original image on spatial and spectral domains. The original 
size of the spectral image and its first six calculated PCA 
components are visualized in Figure 5. The spatial size of the 
spectral image was 800 x 800 pixels and the wavelength area 
was 31 dimensional from 420 nm to 720 nm by 10 nm steps. 
Therefore one extra wavelength channel was added to achieve 
32 spectral dimensions which is needed for the efficient 
computation. First nine calculated inner product images from 
the spectral image are displayed in Figure 6.  

The correlation between calculation times and the number 
of inner product images were measured. CPU and GPU 
calculation times were measured with Quad-core Intel Xeon 
3GHz processor, NVIDIA Quadro FX 3700 and NVIDIA 
GeForce GTX280 graphics cards. Efficiency of the Matlab 
2008a was also measured. NVIDIA Quadro FX 3700 uses 112 
parallel processor cores with 512 MB of graphics memory with 
51.2 GB/sec of memory bandwidth. The GeForce GTX280 uses 
240 parallel processor cores with 1GB of graphics memory 
with 141.7 GB/sec of memory bandwidth which is almost three 
times faster than in Quadro FX 3700.  
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Figure 5. The sample spectral image and the first six calculated PCA components.  
 

   

   

   

Figure 6. First nine PCA inner product images.  
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From the Table 1, we can see that PCA inner product 
image computation in the GPU is very efficient in compared 
with highly optimized multi threaded C++- version and Matlab. 
This can be also seen from Figure 7, where computation time 
was measured from different sizes of spectral images with 8, 16 
and 32 inner product images. 

 

All computation times has been measured by using a timer 
which is provided by CUDA library and the timer was started 
after the spectral image was loaded in the main memory to 
minimize the effect of the hard disk. 

   
 

 
Table 1. Computation times of 32 PCA inner product images with different dimensional spectral images in milliseconds 
Dimensions Size in MB Matlab Xeon 3GHz 

(optimized) 
Quadro FX 3700 GeForce GTX280 

80 x 80 x 32 0.78 18.8 10.87 4.0 2.6 

160 x 160 x 32 3.13 64.1 24.2 7.5 5.4 

240 x 240 x 32 7.03 143.8 53.0 14.6 8.6 

320 x 320 x 32 12.50 251.6 94.3 23.2 14.9 

400 x 400 x 32 19.53 395.3 147.7 35.7 22.7 

480 x 480 x 32 28.13 567.2 215.1 50.1 33.0 

560 x 560 x 32 38.28 768.8 294.1 67.0 43.5 

640 x 640 x 32 50.00 1006.3 378.3 88.2 57.9 

720 x 720 x 32 63.28 1273.4 480.5 109.6 71.4 

800 x 800 x 32 78.13 1568.8 615.1 135.2 89.5 
 
 

Figure 7. Computation times for the different number of PCA inner  
product images by using different computation devices. 
 
 

Figure 8. Computation speedups for different computation devices 
 
 

 
 

 
From Figure 7, we can see that computation times raise 

very high with Matlab and even with C-program for larger 
matrices. Computation time for the largest test image is about 7 
times faster in GTX280 than in CPU which can be seen from 
the Figure 8. By using Matlab, difference to GTX280 is over 17 
times faster. Differences between Quadro FX 3700 and 
GTX280 cards are not so massive. 

The Results show that when the real-time (25fps) 
computation is needed, CPU can only process 160x160x32 
dimensional spectral images, while GTX280 card can process 
480x480x32 dimensional spectral images. The spatial size of 
the spectral image which CPU can compute on real-time is nine 
time smaller than the spectral image which GPU can process on 
real-time. This result is very good for this implementation.  

 
Discussion 

We have developed and tested a very high performance 
implementation of PCA for spectral image analysis. Speed of 
the computation was tested with different dimensional spectral 
images. With GPU, we can achieve real-time computation for 
480x480x32 dimensional spectral image when CPU can only 
achieve real-time performance for 160x160x32 dimensional 
spectral image. This is very good and an important result for 
this research and for our future work.  

We have started to implement real-time PCA computation 
for microscopy surgery camera video which is used in brain 
surgeries. The video data can contain three or more channels. 
Therefore this study is relevant to the future studies. Also 
spectral image estimation from the RGB-video will be 
examined by utilizing the efficiency of the GPU.  
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