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Abstract
This work examines a possibility to enhance the spatial res-

olution of spectral color images by using RGB color images. Nu-
anceFX spectral imaging system, which allows the measuring of
both spectral and RGB color images at different resolution lev-
els using the identical geometry, is used for acquiring the images
needed. The used enhancing process is based on the correspon-
dence between spectra of a low spatial resolution spectral image,
LRSPE, and RGB-triplets of a high spatial resolution RGB image,
HRRGB, both globally and locally. In a global approach, an es-
timated spectrum corresponding to index number i is defined as
the average of all the spectra mapping into that index number,
whereas in a local approach an estimated spectrum is defined as
a spectrum of the closest mother pixel with the same index num-
ber. In the cases where the index number of pixel to be estimated
equals to zero, the missing spectrum is estimated based on its
neighborhood. The estimated high resolution spectral images,
EHRSPE, are evaluated by comparing them to the real, measured
high resolution spectral images, HRSPE, with respect to RMS er-
rors and ∆E∗ab color differences under four different CIE illumi-
nants, D65, A, F8 and F11.

Introduction
Spectral imaging allows gathering of information that

may be invisible to the image capturing techniques relying
on the principle of trichromatic theory. In comparison to the
conventional metameric imaging, the use of spectral imaging
increases the accuracy of the acquired data. Spectral imaging,
however, is more time consuming than imaging employing only
the commonly used three channels, R, G and B. In addition to
other factors such as the power of the used illumination and the
physical properties of the used camera system, the time needed
for acquiring a spectral image is dependent on desired spatial
and spectral resolution. The higher the degree of the details,
the more time is expended on acquiring process. However, in
many imaging applications both high spectral and high spatial
resolution are required simultaneously, which puts challenges
both to readout implementation and data processing [1].

In the area of remote sensing a fusion technique called
pansharpening is often used. Pansharpening techniques aim to
increase the spatial resolution while simultaneously preserving
the spectral information in the spectral data [2]. In practise,
pansharpening techniques combine panchromatic images of high
spatial resolution, HRPAN, and spectral images of low spatial
resolution, LRSPE, in order to generate spectral images of high
spatial resolution, HRSPE.

The aim of this work is to examine whether the idea of
pansharpening could be applied for spectral color images in
order to decrease the amount of data to be processed during
the acquiring phase. Instead of a spectral image of high spatial
resolution, a spectral image of low spatial resolution and
an RGB image of high spatial resolution could be acquired
and later be combined into a spectral image of high spatial

resolution. Despite of wide range of proposed techniques,
there exists no ideal fusion method and the fused images are
thought as tradeoffs between a good geometrical representation
of structures and a good representation of original colors
[3]. Therefore, the enhancing process used in this study is
based on the correspondence between spectra of low spatial
resolution spectral image, LRSPE, and RGB-triplets of high
spatial resolution RGB image, HRRGB, both globally and locally.

The generated spectral images of high resolution images,
EHRSPE, are evaluated by comparing them to the real high
resolution spectral images, HRSPE, acquired using the identical
measuring geometry with respect to both RMS errors and ∆E∗ab
color differences. The ∆E∗ab color difference calculations are
performed under CIE illuminants, D65, A, F8 and F11 by using
CIE 1964 Supplementary Standard Colorimetric Observer [4].

Resolution Enhancement
RGB-based enhancing of spectral images spatial resolution

exploits the relationship between spectral images of low spatial
resolution and RGB-images of high spatial resolution. When
talking about resolution, one can mean both spatial and spec-
tral resolution. However, throughout this paper, word resolution
will always refer on spatial resolution and thus, the resolution
enhancement means increase in spatial resolution.

Preprocessing: registration
Image registration ensures that information, coming from

images acquired from different viewpoints with various sensors
and possible different times, refers to the same physical region
[5]. Mis-registrations cause artificial colors and features falsify-
ing the interpretation and thus registration is an important prepro-
cessing step in image fusion [2]. A large variety of different reg-
istration techniques have been developed and the existing algo-
rithms are often classified according to their nature (area- based
and feature-based) and according to four basic steps of image
registration procedure: feature detection, feature matching, map-
ping function design, and image transformation and re-sampling
[5]. In this work, however, all the used images have been ac-
quired using the same spectral imaging system and the same
measuring geometry, so the registration phase is pretty straight-
forward and complex registration techniques are not needed.

Replacing mother pixels
After registration phase, the corresponding pixels in a high

resolution RGB-image, HRRGB, and a low resolution spectral
image, LRSPE, are found, and a table consisting of connections
between RGB-triplets and color spectra is generated. These
corresponding pixels are from now on referred as mother pixels.
In the case of low resolution image all original pixels belong to
mother pixels. At the first step of the enhancing process each
mother pixel in a low resolution image is replaced with n child
pixels, of which one is identical to the mother pixel and the
others are initialized to zero. The pixel preserving the original,
acquired spectral information is never modified during the later
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phases of the enhancing process. Thus, the enhancing process
can be considered as adding the extra pixels between the original
mother pixels. The mother pixels could also be considered
as averages of the child pixels, and could thus be replaced
at the beginning with four equal child pixels. That approach
would, however, cause the undesired loss of the original spectral
data. An example of the relationships between the original low
resolution spectral image and the generated high resolution
spectral image in the case of fourfold enhancement is shown in
Fig. 1.

Figure 1. The relationships between the original LRSPE (left) and the gen-

erated EHRSPE (right).

After replacing the mother pixels with child pixels, the
spectral properties of the zero-initialized child pixels are
estimated based on the low resolution spectral image (mother
pixels) and the high resolution RGB-image. From now on the
enhancing process can be divided into three steps, which are

1. Generating a high resolution index image
2. Mapping acquired spectra to index numbers
3. Estimating spectra of non-preserving child pixels

A flowchart of the generation of a high resolution spectral image
is shown in Fig. 2. The steps presented in the flowchart are
explained in more detail below.

Figure 2. A flowchart of the generation of a high resolution spectral image.

Generating a high resolution index image
Generating of a high resolution index image is the first step

in a real enhancing process. Those RGB triplets, whose physi-
cal location corresponds to pixels of LRSPE, are collected from
a HRRGB and indexed such that each index number corresponds
to one triplet, and vice versa. An index number image is gener-
ated by replacing each triplet of the original HRRGB by it’s index

number. Pixels not corresponding to the locations of LRSPE may
contain such triplets which are not included into the collected
triplets, and in these cases the index numbers are set to 0. An
example of the generation of an index number image is shown
in Fig. 3. An original HRRGB is shown on the left and the table
of its index numbers in the middle. The resulting index number
image is shown on the right.

Figure 3. A high resolution image with original RGB-triplets, a table of in-

dexed RGB-triplets (middle), and the generated index number image (right).

Mother-pixels are colored with darker gray.

Estimating spectra of non-preserving child pixels
The estimation of the spectra to be added is based on two

approaches, and the choice of approach depends on the index
number of the pixel to be estimated. For index numbers differing
from zero there exist one or more so called reference spectra
whereas for index number equaling to zero such reference spec-
tra does not exist. A flowchart of the used estimation approaches
shown in Fig. 4. For practical reasons, the estimation of pixels
with nonzero index number is proceeded before the pixels whose
index number equals to zero.

Figure 4. A flowchart of the used estimation approaches.

The estimation of pixels with nonzero index number is
performed either globally or locally. In global approach, the
estimated spectrum S̃(λ ) corresponding to index number i is
defined as the average of all the spectra mapping into that index
number,

S̃(λ ) =
1
m

n

∑
k=1

Sk(λ )uki. (1)

where n is the number of spectra in image, Sk(λ ) is the kth spec-
trum, uki is a scalar value assigned to 1, if Sk(λ ) belongs to group
of ith index number, otherwise it has a zero value, and m is the
number of non-zero uki values. The processing of global ap-
proach consumes less time than the local approach. However,
the group average may not always represent well all the spectra
in the group, especially in the cases of metameric pairs.
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In a local approach the S̃(λ ) is defined as the spectrum of the
closest mother pixel with the same index number. The distance
D between a pixel to be estimated, P1, and a candidate pixel, P2,
is defined as Manhattan distance,

D =
2

∑
i=1
|P1i−P2i|. (2)

In local approach, the estimated spectrum S̃(λ ) corresponding to
index number i is defined as,

S̃(λ ) =
1
m

nD

∑
k=1

Sk(λ )uki, (3)

where nD is the number of pixels at the distance D from the pixel
to be estimated, uki is a scalar value assigned to 1, if Sk(λ ) be-
longs to group of ith index number, otherwise it has a zero value,
and m is the number of non-zero uki values. An example of the
distances between the red pixel to be estimated and its neigh-
boring pixels are shown in Fig. 5. Red pixel is the pixel to be
estimated, gray pixels are mother pixels among which the cor-
responding index number are searched and the numbers define
the manhattan distance from the red pixel. At first round the
mother pixels at one pixel distance are gone through. If the pixel
with corresponding pixel number is not found, the distance is in-
creased by two and the mother pixels at three pixel distance are
examined. If one valid mother pixel is found, the pixel to be es-
timated is replaced by the spectrum of this mother pixel. If more
than one valid mother pixel are found at the distance D from the
pixel to be estimated, the average spectrum of these mother pix-
els is used.

Figure 5. The distances between the pixel to be estimated (red) and its

neighboring pixels.

In the cases where the index number of pixel to be estimated
equals to zero, the missing spectrum is estimated based on its
neighborhood using two different methods. In the first method
the estimated spectrum, S̃(λ ), is defined as average of spectra of
the best matching neighbor (BMN) in RGB space.

3

∑
k=1

(RGB0k−RGBBMNk)2 = mini(
3

∑
k=1

(X)),

X = (RGB0k−RGBik)2) (4)

in which RGB0 is the RGB triplet of the pixel to be esti-
mated and RGBi is the RGB triplet of the ith spectrally nonzero
neighbor. Furthermore,

S̃(λ ) =
1

nBMN

nBMN

∑
j=1

˜SBMN j (λ ). (5)

An example of defining S̃(λ ) is shown in Fig. 6, in which the
spectrum of red pixel is to be estimated. RGB triplets of the
pixel to be estimated and its neighboring pixels are shown on the
left and the distances between the neighboring triplets and the
triplet corresponding to the pixel to be estimated on the right. In
this case there are two BMNs and these pixels are colored with
green color. Now the spectrum of the red pixel is defined based
on these two green pixels. The left one is a mother pixel, so one
knows it already contains a spectrum. From Fig. 3 one can see
that the index number of the green pixel on the right is 3 and
thus differs from zero. This means that also this pixels already
contains a spectrum and the S̃(λ ) can be taken as average of
these two green pixels. in RGB space

Figure 6. The RGB neighborhood of the pixel to be estimated (left) and

the distances between the neighboring triplets (right).

In the second method, the estimated spectrum, S̃(λ ), is
defined as average of the neighboring pixels,

S̃(λ ) =
1
nn

nn

∑
k=1

Sk(λ ), (6)

in which nn is the number of nonzero neighboring pixels and
Sk(λ ) is kth neighboring spectrum.

Experiments
Acquired images

In these experiments four objects were acquired by Nuance
FX multispectral imaging system [6], which allows the measur-
ing of both spectral and RGB color images at three resolution
levels. The images were acquired with a geometry 45/0, 45 and
0 being the angles between the normal of the measured surface
and the incident light, and the normal of the measured surface
and the capturing device, respectively. Both spectral and RGB
color images were taken at two resolution levels and the the sizes
of the produced images were 520x696 and 1040x1392 pixels, re-
spectively. The objects were measured under D65 light source
of Gretag Macbeth SpectraLight III light booth, and in the case
of spectral images the used wavelength range was from 420nm
to 720nm at 20nm intervals. However, due to the low spectral
radiance of the used light source at the beginning of the blue re-
gion of the spectrum and due to the possible lower sensitivity
of the used camera system at the very same region, the first two
channels contained too much noise and thus, were not used in the
experiments. The measured objects consisted of different mate-
rials such as cardboard (”food”and ”tea”), and plastic (”deos”).
The surfaces of all the other measured objects but ”deos” were
flat. The measured objects are shown in an RGB format in Fig.
7.
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Figure 7. The acquired images in an RGB-format. The first row: ”chart” &

”deos” and the second row: ”food” & ”tea”.

Color differences between acquired images
In order to distinguish the color differences between the real

high resolution spectral image HRSPE and the estimated high res-
olution spectral image EHRSPE into the differences originated
from the discrepancy between acquired spectra at low and high
resolution levels and the differences resulted in the enhancing
process, the RMS errors and ∆E∗ab color differences between
the acquired high and low resolution spectral images were cal-
culated. For conducting these calculations, the high resolution
spectral images were transformed into the lower resolution level
by using the previously defined mother-pixels instead of whole
spectral image. The color difference calculations were performed
under CIE illuminants D65, A, F8 and F11 by using CIE 1964
Supplementary Standard Colorimetric Observer. Average and
maximum RMS errors and average ∆E∗ab color differences be-
tween the acquired spectral images of high and low resolution
are shown in Table 1.

Average ∆E∗ab under RMS error
Image D65 A F8 F11 max ave
chart 1.6 1.5 1.5 1.8 0.0841 0.0085
deos 1.8 1.8 1.8 2.0 0.1014 0.0082
food 1.9 1.8 1.8 2.1 0.0742 0.0093
tea 1.9 1.9 1.8 2.1 0.1160 0.0100

Table 1. Average and maximum RMS errors, and average ∆E∗ab
color differences between the acquired HRSPE and LRSPE un-
der CIE illuminants D65, A, F8 and F11.

Groups
Average and maximum RMS errors and average ∆E∗ab color

differences between the group averages and the spectra in the
groups under illuminants A, D65, F8 and F11 are shown in Table
2. In M1 the used spectra are taken from HRSPE and the RGB
triplets from HRRGB whereas in M2 the spectra are taken from
LRSPE and the RGB triplets are from HRRGB.

Enhancing process and results achieved
The spectral images are enhanced by using the described

methods. At first, the images are enhanced from the acquired low
resolution spectral image and as a result, four different images
are got,

1. Nonzero pixels globally & zero pixels as averages of neigh-
bors

Average color differences
under A under D65 under F8 under F11

Image M1 M2 M1 M2 M1 M2 M1 M2
chart 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.6
food 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5
deos 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5
tea 0.5 0.5 0.6 0.6 0.5 0.5 0.6 0.6

RMS errors
M1 M2

Image max ave max ave
chart 0.0423 0.0019 0.0819 0.0024
food 0.0238 0.0015 0.00498 0.0019
deos 0.0252 0.0017 0.0685 0.0020
tea 0.0821 0.0022 0.0036 0.0022

Table 2. Average and maximum RMS errors and average ∆E∗ab
color differences between the group averages and the spectra
in the groups under illuminants D65, A, F8 and F11.

2. Nonzero pixels globally & zero pixels as spectrum/averages
of the closest triplet(s)

3. Nonzero pixels locally & zero pixels as averages of neigh-
bors

4. Nonzero pixels locally & zero pixels as spectrum/averages
of the closest triplet(s).

Next, the 1/4 of the acquired high resolution images were
used as low resolution spectral images and the enhancing was
performed as above.

Average ∆E∗ab color differences between the estimated high
resolution spectral image EHRSPE and the real, measured high
resolution spectral image HRSPE under illuminants D65, A, F8
and F11 are shown in Tables 3 and 4. In the case of results shown
in Table 3 the spectral images are enhanced from low resolution
spectral images whereas in the case of results shown in Table 4
the 1/4 of the acquired high resolution image is used as starting
point for the enhancing process. In the case of global approach
the spectra of nonzero index numbers are taken as averages of
spectra within group whereas in the case of local approach the
spectra of nonzero index numbers are estimated locally based
on the search in an increasing neighborhood. In the cases of
MA and MB, the spectra of zero index numbers are taken as
averages of eight neighboring pixels and as ”spectra of closest
RGB neighbors”, respectively. The maximum and average RMS
errors between the estimated high resolution spectral image
EHRSPE and the real, measured high resolution spectral image
HRSPE in the cases of enhancing from low resolution image and
1/4 of the high resolution image are shown in Tables 5 and 6.

Discussion and Conclusions
A possibility to enhance the spatial resolution of spectral

color images by using RGB color images was examined in this
work. The experiments were performed by using spectral and
RGB color images of four objects. The used images were ac-
quired by NuanceFX spectral imaging system and there was both
low and high resolution version of each image used. The enhanc-
ing process was divided into two parts which were the estimation
of pixels whose index numbers were nonzero and estimation of
pixels whose index numbers were equal to zero. Furthermore,
the estimation of pixels whose index numbers were nonzero
was divided into two approaches. In the global approach, the
estimated spectrum corresponding to index number i was defined
as the average of all the spectra mapping into that index number,
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Global approach
under D65 under A under F8 under F11

Image MA MB MA MB MA MB MA MB
chart 1.5 1.6 1.5 1.5 1.5 1.6 1.7 1.8
food 2.0 2.1 1.9 2.0 1.9 2.0 2.1 2.2
deos 1.7 1.8 1.7 1.8 1.7 1.8 1.9 2.0
tea 2.2 2.2 2.2 2.3 2.1 2.2 2.3 2.4

Local approach
under D65 under A under F8 under F11

Image MA MB MA MB MA MB MA MB
chart 1.6 1.6 1.5 1.5 1.6 1.5 1.8 1.8
food 2.1 2.2 2.0 2.1 2.0 2.2 2.2 2.3
deos 1.8 1.8 1.8 1.8 1.7 1.8 1.9 2
tea 2.3 2.4 2.2 2.3 2.2 2.3 2.4 2.5

Table 3. Average ∆E∗ab color differences between the EHRSPE
and HRSPE under illuminants A, D65, F8 and F11. EHRSPE has
been enhanced from low resolution spectral image.

Global approach
under D65 under A under F8 under F11

Image MA MB MA MB MA MB MA MB
chart 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.0
food 1.3 1.4 1.2 1.3 1.2 1.3 1.3 1.4
deos 1.0 1.1 1.0 1.0 1.0 1.0 1.2 1.2
tea 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.6

Local approach
under D65 under A under F8 under F11

Image MA MB MA MB MA MB MA MB
chart 0.9 0.9 0.8 0.8 0.8 0.8 1.0 1.0
food 1.4 1.4 1.3 1.4 1.3 1.4 1.4 1.5
deos 1.0 1.1 1.0 1.0 1.0 1.0 1.2 1.2
tea 1.5 1.6 1.5 1.6 1.5 1.6 1.6 1.7

Table 4. Average ∆E∗ab color differences between the EHRSPE
and HRSPE under CIE illuminants D65, A, F8 and F11. EHRSPE
has been enhanced from 1/4 of high resolution spectral im-
age.

and in the local approach the estimated spectrum was defined
as the spectrum of the closest mother pixel with the same index
number. The estimation of the pixels whose index number was
zero was based on the neighborhood of the pixel to be estimated.
Again, two different approaches was used and the missing spec-
trum was defined either based on the best matching neighbor
(BMN) in RGB space or average spectrum of neighboring pixels.

RMS errors
Global

MA MB
Image max ave max ave
chart 0.2146 0.0086 0.2460 0.0087
food 0.0930 0.0094 0.1422 0.0099
deos 0.3301 0.0082 0.3905 0.0084
tea 0.1726 0.0112 0.2254 0.0118

Local
MA MB

Image max ave max ave
chart 0.2328 0.0778 0.2509 0.0779
food 0.0930 0.0097 0.1422 0.0103
deos 0.1131 0.0087 0.1833 0.0086
tea 0.1746 0.0116 0.2241 0.0122

Table 5. Maximum and average RMS errors between the
EHRSPE and HRSPE under CIE illuminants D65, A, F8 and F11.
EHRSPE has been enhanced from low resolution spectral im-
age.

RMS errors
Global

MA MB
Image max ave max ave
chart 0.1175 0.0036 0.1423 0.0036
food 0.0967 0.0053 0.0996 0.0056
deos 0.1053 0.0038 0.1360 0.0039
tea 0.1682 0.0069 0.2345 0.0075

Local
MA MB

Image max ave max ave
chart 0.2351 0.0778 0.2527 0.0779
food 0.0967 0.0056 0.0996 0.0060
deos 0.1052 0.0039 0.1360 0.0040
tea 0.1707 0.0075 0.2533 0.0081

Table 5. Maximum and average RMS errors between the
EHRSPE and HRSPE under CIE illuminants D65, A, F8 and F11.
EHRSPE has been enhanced from 1/4 of high resolution spec-
tral image.

The images were enhanced using both the acquired low
resolution spectral images and 1/4 of the acquired high resolu-
tion spectral images as a starting point. The latter enhancing
was performed in order to provide some certain reference
results against which the enhancing results from the previously
mentioned case could be also evaluated. The generated high
resolution spectral images were evaluated by comparing them
to the real, measured high resolution spectral images with
respect to both RMS errors and ∆E∗ab color differences under
four different CIE illuminants, D65, A, F8 and F11. Obviously
the color differences and RMS errors are smaller in the case
where the 1/4 of the high resolution spectral images are used
as starting points for enhancing process when compared to
the cases in which the enhancing has been started from low
resolution spectral images. When comparing the results of
methods referred as MA and MB, the lower differences are
achieved by using the method MA, in which the pixels whose
index numbers equal to zero are estimated as taken as averages
of neighboring pixels. The differences are not very big but
the results are straightforward. The case is similar when the
estimation processes of those pixels whose index numbers are
nonzero are evaluated. The global approach seems to be slightly
better.

In general, the proposed local approach is much more
time consuming compared to the global approach and thus the
use of it does not seem very tempting unless there are some
reason to expect the case of metameric colors. Otherwise, the
extra time spent for complete local search does not seem to be
beneficial. The problem with global approach is that the spectra
mapping into the same RGB triplet may vary a lot and may also
contain some meaningful and important ”outliers”. In the case
of global approach, this kind of information may be neglected.

This study was based on small amount of images of rather
simplified objects. The work needed to be done in the future
would be the examination of more challenging objects, in which
the details and the areas of solid colors are very tiny. Instead of
either global or local approach one should find a way how to
combine the both perspectives and thus, be able to achieve rather
time efficient method. Furthermore, image to be processed could
be divided into parts based on a corresponding high resolution
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RGB image. Based on this information parts of unified colors
could be enhanced using different method than the border areas
or any other complex parts.
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