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Abstract
This work examines the spectrum preserving properties of a

multi-resolution analysis-based intensity modulation (MRAIM)
when used for increasing the spatial resolution of spectral color
images. The MRAIM algorithm is originally designed to fuse
high-resolution panchromatic images with low-resolution spec-
tral images in order to get high-resolution spectral images for
remote sensing applications. Instead of panchromatic images,
for which the MRAIM algorithm has originally been designed
for, the MRAIM algorithm is implemented to use information
from both grayscale and RGB color images. In order to utilize
the information of the three channels included in RGB images,
two different models are derived and examined. In addition, two
kind of scaling factors are used for compensating possible differ-
ences between the images acquired at different resolution levels.
The resulting high resolution spectral images are compared to
the real acquired high resolution spectral images with respect to
both maximum and average RMS errors and ∆E∗ab color differ-
ences under CIE illuminants D65, A, F8 and F11. The used im-
ages are acquired by NuanceFX spectral imaging system, which
allows the measuring of both spectral and RGB images at differ-
ent resolution levels at identical geometry.

Introduction
Image fusion aims at the integration of disparate and

complementary data to enhance the information apparent in the
images as well as to increase the reliability of the interpretation
[1]. In digital imagery, image fusion is applied in order
to sharpen images, improve geometric corrections, provide
stereo-viewing capabilities, replace defective data, substitute
missing information, enhance certain features and complement
data sats for improved classification [1]. Detailed reviews on
image fusion methods and technology are given by Pohl and van
Genderen [1], and Smith and Heather [2].

In the area of remote sensing a large number of image fu-
sion methods have been proposed for combining high-resolution
panchromatic images and low-resolution spectral images in
order to generate high-resolution spectral images. According
to Thomas et al. [3], the ideal fusion method should be able
to preserve original spectral and spatial information of the
multi-spectral images while increasing the spatial resolution.
Furthermore, according to Wald et al. [4] the resulting fused
high-resolution spectral image should be as identical as possible
to the real high-resolution spectral image that would be observed
by spectral sensors at high resolution level. However, in
the case of image fusion processes, there usually is no such
ideal reference image into which the fused image could be
compared. Thus, quality assessment of used images is often
carried out by human visual inspection [5]. Many different
image quality measurements such as MI (mutual information)
[6], OEFP (objective evaluation of fusion performance) [7],
and IFQI (image fusion quality index) [8] have been developed,
but the variety of different application requirements and the
lack of a clearly defined ground-truth complicate the objective

performance assessment [9]. There neither exists an ideal fusion
method and thus the fused images are thought as tradeoffs
between a good geometrical representation of structures and a
good representation of original colors [10]. For an example,
methods based on PCA and Brovey transforms [11], provide
superior visual high resolution spectral images but ignore the
requirement of a high quality synthesis of spectral information
[12].

Among the various frameworks in which image fusion has
been formulated, the multiresolution approach is one of the most
intensively studied and used [13]. A multi-resolution based
pan-sharpening has gained a lot of interest lately in the area of
remote sensing, since it has given promising results in respect
to preserving the spectral information. Furthermore, it also has
advantages of being time efficient and rather easy to implement.
Within the visual spectral imaging, spectral image fusion as
been applied for improving face recognition under constant
and varying illumination [14, 15], and improving the texture in
endoscope images [16].

This work examines the spectrum preserving properties of
a multi-resolution analysis-based intensity modulation [17]
which is used for pansharpening in remote sensing applications.
The experiments are based on the use of spectral and RGB
images of both high and low spatial resolution. The used
images are acquired by NuanceFX spectral imaging system
[18], which allows the measuring of both spectral and RGB
images at different resolution levels at identical geometry. The
spatial resolution of low resolution spectral images is increased
by MRAIM method using high resolution grayscale images
which correspond to panchromatic images and are generated
from acquired high resolution RGB images as averages over
the three channels. Next, the resolution is increased by using
RGB images and the applicability of two different approaches
of utilizing RGB images in the MRAIM algorithm is examined.
The resulting high resolution spectral images are compared to
the real acquired high resolution spectral images with respect
to both RMS errors and ∆E∗ab color differences under CIE
illuminants D65, A, F8 and F11. In addition, the problematic
cases from the algorithm point of view are defined in discussion.

MRAIM fusion
Multiresolution analysis-based intensity modulation

(MRAIM) introduced by Wang et al. [17] is designed to fuse
a high-resolution panchromatic image with a low-resolution
spectral image in order to get a high-resolution spectral image.
The starting point is the following assumption according to
which the proportion of pixels of high and low resolution
panchromatic images (DNhigh(λPAN) & DNlow(λPAN)) relates
to the proportion of pixels of high and low resolution spectral
images (DNhigh(λMS) & DNlow(λMS)).

DNhigh(λPAN)
DNlow(λPAN)

=
DNhigh(λMS)
DNlow(λMS)

(1)
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which yields

DNhigh(λMS) =
DNhigh(λPAN)
DNlow(λPAN)

DNlow(λMS) (2)

In order to avoid problems arising in the case of
DNlow(λPAN) = 0 Equation 2 is transferred into the following
form

DNhigh(λMS) = DNlow(λMS)+αw (3)

in which w is a difference between high- and low-resolution im-
ages,

w = DNhigh(λPAN)−DNlow(λPAN) (4)

and is sometimes also called as wavelet plane [19]. Furthermore,
α is defined as,

α =

{
1, if DNlow(λPAN) = 0

DNlow(λMS)
DNlow(λPAN) , if DNlow(λPAN) 6= 0

(5)

and is referred as the modulation coefficient for the detailed
information.

DNhigh(λMS) can be calculated as long as DNlow(λPAN) is
approximated. Many different methods can be used for calcula-
tion of DNlow(λPAN) from DNhigh(λPAN), and a paper focusing
on this issue can be found in [12].

High resolution panchromatic image DNhigh(λPAN) can be
thought as grayscale image, which can be generated from a high
resolution RGB image, DNhigh(λRGB), as average over the three
channels.

DNhigh(λPAN) =
1
3

3

∑
i=1

DNhigh(λRGBi) (6)

Using the three channels
The previous equations are based on the use of panchro-

matic images consisting of one channel. If RGB-images, which
consist of three channels, are employed, the above equations
must be modified. In these experiments two methods are applied.

Method 1
In the first method a panchromatic image is replaced by one

of the RGB channels, depending on the wavelength of the spec-
tral channel to be processed.

w(λ ) = DNhigh(λk)−DNlow(λk) (7)

and

k =





R, if λ > 600 nm
B, if λ < 520 nm
G, otherwise

(8)

Furthermore, α is defined as follows

α(λ ) =

{
1, if DNlow(λk) = 0

DNlow(λMS)
DNlow(λk)

, if DNlow(λk) 6= 0
(9)

and k is defined as above.

Method 2
In the second method panchromatic image is replaced by the

weighted combination of the RGB channels. The weights used
are dependent on the wavelength of the spectral channel to be
processed. Hypothetically, the used weights should be propor-
tional to the sensitivities of the used camera system. However,
because of the current unavailability of the camera sensitivities
due to some practical equipment related issues, the color match-
ing functions are applied instead.

w(λ ) =
B

∑
k=R

β (λk)(DNhigh(λk)−DNlow(λk)) (10)

and

β (λk) =





x(λ )
x(λ )+y(λ )+z(λ ) , if k=R

y(λ )
x(λ )+y(λ )+z(λ ) , if k=G

z(λ )
x(λ )+y(λ )+z(λ ) , if k=B

(11)

in which x(λ ), y(λ ) and z(λ ) are the color matching functions.
Using this method, α(λ ) is defined as

α(λ ) =

{
1, if DNlow(λk) = 0

DNlow(λMS)
ΣB

k=RDNlow(λk)
, if DNlow(λk) 6= 0 (12)

Scaling factors
The scaling factor S is used in order to compensate the dif-

ferences in spectra acquired at different resolution levels. Ap-
plicability of two different scaling factors is examined and these
scaling factors S1 and S2 are defined as follows.

S1 = (DNhigh(λPAN)−DNlow(λPAN))./255 (13)

S2 =
DNhigh(λPAN)
DNlow(λPAN)

(14)

In the case of S1 Equation 3 can be written as

DNhigh(λMS) = (S1 +1)DNlow(λMS)+αw (15)

and in the case of S2 Equation 3 is defined as

DNhigh(λMS) = S2DNlow(λMS)+αw (16)

Experiments
Acquired images

In these experiments two objects were acquired by Nuance
FX multispectral imaging system [18], which allows the mea-
suring of both spectral and RGB color images at three resolution
levels. The images were acquired with a geometry 45/0, 45 and 0
being the angles between the normal of the measured surface and
the incident light, and the normal of the measured surface and the
capturing device, respectively. Both spectral and RGB color im-
ages were taken at two resolution levels and the the sizes of the
produced images were 520x696 and 1040x1392 pixels. The ob-
jects were measured under D65 light source of Gretag Macbeth
SpectraLight III light booth, and in the case of spectral images
the used wavelength range was from 420nm to 720nm at 10nm
intervals. The acquired objects were cardboard image of lasagna
portion and part of Gretag Macbeth ColorChecker. The objects
are shown in an RGB format in Fig. 1 and are from now referred
as ”chart” and ”food”. Due to the low spectral radiance of the
used light source at the beginning of the blue region of the spec-
trum and due to the possible lower sensitivity of the used camera
system at the very same region, the first two channels contained
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too much noise and thus, were not used in experiments. In order
to distinguish the color differences between the real high resolu-
tion spectral image and the estimated high resolution spectral im-
age into the differences originated from the discrepancy between
acquired spectra at low and high resolution levels and the differ-
ences resulted while increasing the spatial resolution, the RMS
errors and ∆E∗ab color differences between the acquired high and
low resolution spectral images were calculated. The maximum
and average ∆E∗ab color differences under D65, A, F8 and F11 are
shown in Table 1. In addition, the maximum and average RMS
errors are 0.0841 & 0.0085 in the case of ”chart”, and 0.0742 &
0.0093 in the case of ”food”.

Color differences

under A under D65 F8 F11

Image max ave max ave max ave max ave

chart 16.3 1.6 16.0 1.5 16.4 1.5 19.3 1.8

food 11.9 1.9 12.1 1.8 11.3 1.8 12.7 2.1
Table 1. Maximum and average ∆E∗ab color differences be-
tween the spectral images acquired at high and medium res-
olution levels.

Enhancing using grayscale images
In the first part of the experiments the spatial resolution

of low resolution spectral images was enhanced by using
high resolution grayscale images. The enhancing process was
performed according to the original pansharpening approach
used widely for remote sensing images. Since the real acquired
panchromatic images were not available, the grayscale images,
created from the acquired RGB images as averages over the
three color channels, were used.

The low resolution images needed in Equation 3 were
generated from the high resolution image as averages of 2× 2
pixel areas. In addition, acquired low resolution RGB images
transformed into the grayscale form were also used. These two
kind of low resolution images used are referred in the below
Tables as ”calculated” and ”measured” low resolution images.
Furthermore, the spatial resolution was enhanced both with
and without scaling. The maximum and average ∆E∗ab color
differences between the acquired and estimated high resolution
spectral images are shown in Table 2, and maximum and average
RMS errors can be found as a part of Tables 4 (”chart”) and 6
(food”). In each of these Tables, the used scaling methods are
referred as S0-S2. In the cases of S1 and S2 scalings presented
in Equations 15 and 16 are performed, whereas in the case of
S0 no scaling is used. ∆E∗ab color differences between acquired
and estimated high resolution ”chart” images in the case of
enhancing based on grayscale image are shown in a pictorial
form in the first part of Fig. 2. Furthermore, an example of
acquired and estimated spectra are shown in Fig. 3.

Figure 1. Acquired images (”chart” and ”food”) in an RGB format.

Color differences (chart)

Calculated low resolution image

chart under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 22.6 1.6 21.9 1.6 22.0 1.6 25.2 1.9

S1 21.9 1.6 21.0 1.6 21.0 1.6 24.0 1.9

S2 19.8 1.7 19.1 1.6 17.7 1.6 19.5 1.9

Measured low resolution image

chart under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 22.6 1.6 21.9 1.6 22.0 1.6 25.1 1.9

S1 21.8 1.6 21.0 1.6 21.0 1.6 24.0 1.9

S2 19.5 1.7 18.9 1.6 17.6 1.6 19.3 1.9

Color differences (food)

Calculated low resolution image

food under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 12.0 1.8 12.3 1.7 12.0 1.7 15.2 2.0

S1 11.6 1.7 11.9 1.6 11.6 1.6 14.4 1.9

S2 10.8 1.7 11.3 1.7 10.5 1.7 11.2 1.9

Measured low resolution image

food under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 13.2 1.8 13.1 1.7 12.8 1.7 16.1 2.0

S1 12.7 1.7 13.0 1.6 12.4 1.6 15.3 1,9

S2 10.9 1.7 11.6 1.7 10.5 1.7 12.0 1.9
Table 2. Maximum and average ∆E∗ab color differences be-
tween the estimated and acquired high resolution spectral im-
ages under CIE illuminants D65, A, F8 and F11. The enhancing
has been done using grayscale images.

Enhancing using RGB images
In the second part of the experiments the spatial resolution

of low resolution spectral images was enhanced by using high
resolution RGB images. Based on the assumption, the use of
information from three channels instead of one would improve
the accuracy of estimated spectra. As described in the previous
section, two different methods were used in order to utilize the
information from three channels, and from now on these meth-
ods are referred as M1 and M2. In M1, the panchromatic images
of the MRAIM model were replaced by one of the RGB chan-
nels, depending on the wavelength of the spectral channel to be
processed. In M2, the panchromatic images were replaced by
the weighted combination of the RGB channels, as explained in
Equations 10 -12. The calculations were performed both with
and without scaling. For RGB images the scaling factors were
calculated as averages of scaling factors of each channel. The
maximum and average ∆E∗ab color differences between the ac-
quired and estimated high resolution spectral images are shown
in Tables 3 and 5, and maximum and average RMS errors can
be found as a part of Tables 4 (”chart”) and 6 (food”). ∆E∗ab
color differences between acquired and estimated high resolu-
tion ”chart” images in the case of enhancing based on RGB im-
age and methods M1 & M2 are shown in a pictorial form in Fig.
2. Furthermore, an example of acquired and estimated spectra
are shown in Fig. 3.

Discussion & Conclusions
The spectrum preserving properties of a multi-resolution

analysis-based intensity modulation (MRAIM) when used
for increasing the spatial resolution of spectral images. was
examined in this work. In the performed experiments, two
spectral images of low spatial resolution were transformed into
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Color differences (chart, M1)

Calculated low resolution image

chart under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 11.7 1.8 10.6 1.7 11.7 1.7 13.9 2.0

S1 12.2 1.8 11.1 1.7 12.0 1.8 14.1 2.0

S2 31.2 1.9 32.3 1.9 32.6 1.9 36.2 2.2

Measured low resolution image

food under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 14.2 2.3 12.7 2.3 13.5 2.3 16.5 2.5

S1 14.2 2.4 13.0 2.3 13.8 2.3 16.5 2.5

S2 30.7 2.5 31.9 2.4 32.4 2.5 35.5 2.7

Color differences (chart, M2)

Calculated low resolution image

food under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 10.3 1.6 9.5 1.5 10.3 1.5 13.3 1.8

S1 10.4 1.6 9.8 1.5 10.3 1.6 13.2 1.8

S2 27.0 1.7 29.0 1.7 29.3 1.7 33.2 2.0

Measured low resolution image

food under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 11.2 1.8 10.7 1.8 11.1 1.8 14.0 2.0

S1 11.4 1.8 11.0 1.8 11.2 1.8 14.0 2.1

S2 26.7 2.0 28.9 2.0 29.2 2.0 32.7 2.3
Table 3. Maximum and average ∆E∗ab color differences be-
tween the estimated and acquired high resolution spectral im-
ages under CIE illuminants D65, A, F8 and F11. The enhancing
has been done using RGB images.

RMS errors (chart)

Calculated low resolution image

chart grayscale RGB M1 RGB M2

method max ave max ave max ave

S0 0.0910 0.0072 0.0409 0.0082 0.0413 0.0080

S1 0.0777 0.0073 0.0507 0.0087 0.0496 0.0086

S2 0.0551 0.0076 0.0945 0.0099 0.0938 0.0097

Measured low resolution image

chart grayscale RGB M1 RGB M2
method max ave max ave max ave

S0 0.0910 0.0072 0.0461 0.0097 0.0448 0.0092

S1 0.0778 0.0074 0.0607 0.0103 0.0589 0.0099

S2 0.0551 0.0077 0.1016 0.0117 0.0999 0.0112
Table 4. Maximum and average RMS errors between the esti-
mated and acquired high resolution spectral images.

spectral images of high spatial resolution by using MRAIM
algorithm, which is used in remote sensing applications for
increasing the spatial resolution of spectral images. In the
performed experiments both high resolution grayscale and RGB
images were employed.

In the case of grayscale images, the use of acquired low
resolution image instead of calculated low resolution image
seems not to make any real difference. When considering the
maximum color difference, the use of scaling clearly seems to
lower the differences. However, the same does not hold true
in the case of average color differences, according to which no
clear benefit is achieved by using either of the scaling methods.
The similar observations can be done also in the case of RMS
errors. The use of scaling lowers considerably the maximum
errors, but also cause some increase in the average RMS values.

Color differences (food, M1)

Calculated low resolution image

chart under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 9.8 1.8 10.1 1.7 9.8 1.8 12.5 2.0

S1 9.6 1.8 9.5 1.7 9.5 1.7 12.4 1.9

S2 11.6 1.9 11.2 1.8 11.3 1.9 12.9 2.1

Measured low resolution image

chart under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 11.9 2.1 10.4 1.9 11.5 1.9 11.7 2.1

S1 11.9 2.1 10.4 1.9 11.5 2.0 11.7 2.2

S2 13.6 2.3 12.8 2.2 12.8 2.2 14.0 2.4

Color differences (food, M2)

Calculated low resolution image

food under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 8.6 1.6 8.4 1.6 8.7 1.6 12.0 1.8

S1 9.0 1.6 8.6 1.5 9.0 1.5 12.0 1.8

S2 12.0 1.8 11.4 1.7 12.3 1.7 13.8 2.0

Measured low resolution image

food under D65 under A under F8 under F11

method max ave max ave max ave max ave

S0 7.8 1.5 8.3 1.5 7.8 1.5 9.6 1.7

S1 7.8 1.6 8.3 1.5 7.8 1.5 9.6 1.7

S2 12.2 1.9 11.6 1.8 12.2 1.8 13.9 2.1
Table 5. Maximum and average ∆E∗ab color differences be-
tween the estimated and acquired high resolution spectral im-
ages under CIE illuminants D65, A, F8 and F11. The enhancing
has been done using RGB images.

RMS errors (food)

Calculated low resolution image

food grayscale RGB M1 RGB M2

method max ave max ave max ave

S0 0.0807 0.0079 0.0347 0.0082 0.0341 0.0080

S1 0.0522 0.0071 0.0673 0.0080 0.0699 0.0078

S2 0.0855 0.0083 0.1277 0.0105 0.1299 0.0105

Measured low resolution image

food grayscale RGB M1 RGB M2
method max ave max ave max ave

S0 0.0807 0.0079 0.045 0.0073 0.0317 0.0067

S1 0.0523 0.0072 0.0728 0.0078 0.0742 0.0073

S2 0.0855 0.0084 0.1362 0.0114 0.1385 0.0111
Table 6. Maximum and average RMS errors between the esti-
mated and acquired high resolution spectral images.

In the case of RGB images, the use of S2 scaling increases
notably both maximum and average color differences and RMS
errors between the acquired and estimated high resolution
spectral images. In addition, neither the other scaling method
seems to give any clear benefit. When comparing methods M1
and M2 to each other, the results achieved are congruent in the
case of RMS errors. However, in the case of color differences,
the lower differences are achieved by using method M2.

The main point, however, is what in general happens when the
spatial resolution of low resolution spectral images is enhanced.
At the beginning, the average color differences between the low
resolution spectral image and the high resolution spectral image,
whose resolution was lowered to the size of the low resolution
spectral image, were in the case of ”chart” around 1.5-1.6 for
D65, A and F8, and 1.8 for F11, which generally produces higher
errors). In the case of ”food”, these values were 1.8-1.9 for D65,
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Figure 2. The resulted color differences between the enhanced and ac-

quired high resolution spectral images in a pictorial form. Enhancing has

been done by using a) grayscale image , b) RGB image and method M1

and c) RGB image and method M2. The images have been scaled to use

the whole gray colormap.

A and F8, and 2.1 for F11. In the case of enhancing by grayscale
images without any scalings the corresponding numbers are 1.6
and 1.7-1.8 for D65, A and F8, and 1.9 and 2.0 for F11 in the
cases of ”chart” and ”food”, respectively. For enhancing using
RGB image and method M1, the numbers are 1.7-1.8 for D65,
A and F8, and 2.0 for F11 for both ”chart” and ”food” images.
Furthermore, for RGB images and method M2, the numbers
are even a bit lower - in the case of ”chart” 1.5-1.6 for D65,
A and F8, and 1.8 for F11, whereas in the case of ”food” 1.6
for D65, A and F8, and 1.8 for F11. Thus, based on the color
differences, the enhancing process without scalings seems to
work quite nicely. Furthermore, when comparing the enhanced
images to the acquired high resolution images, the RMS errors
are smaller than the ones achieved by comparing the original, ac-
quired images which are transferred into the low resolution level.

From a Fig. 2, in which the achieved color differences are

Figure 3. An example of two spectra of a high resolution spectral image

and spectra estimated by MRAIM algorithm using grayscale image, RGB

image and method M1 and RGB image and method M2.

presented in a pictorial form for image ”chart”, one can notice
that the largest color differences, are on those areas in which one
color is changing into another color. This is caused by the fact
that the grayscale images which are taken as averages over the
channels of acquired RGB images are not able to provide enough
information about the changes in color content. As an example,
let us assume RGB triplet of values [200 100 0]. In grayscale
image this triplet would be presented as (200+100+0)/3=100.
Furthermore, let us assume that in the next RGB triplet the
values are [220 80 0]. The grayscale presentation equals to the
previous one even though the two triplets are not the same. As a
result, the wavelet plane w which is used in MRAIM algorithm
to provide the information about the difference between high-
and low-resolution images, is not always really able to extract
the required information.

One can distinguish between two problematic cases. In
the first one, the compared gray level pixels in the high and
low resolution images are identical but the corresponding RGB
triplets are not alike, as described above. In this case, the
wavelet plain w equals to zero and thus, the high resolution
pixel to be estimated (according to Equation 3) equals to the
previous low resolution pixel. In the other case, the changes in
RGB triplets are transferred to the grayscale presentation and the
wavelet plain no longer equals to zero. However, the information
transferred to the modulation coefficient α , includes only the
information about lightness changes and thus each wavelength
of the spectra of low resolution image is put through the same
changes (according to Equation 3). The issue is problematic
but is emphasized only on the border areas of the colors. In
the examined models M1 and M2, the use of three different
channels allows the handling of color information at different
parts of spectra. This removes the problems classified to case
one above and reduces the problems classified to the previously
mentioned case two. From Fig. 2 one can notice that in the cases
where RGB images have been used the clear straight lines of
color difference does not exist anymore. This is good, but there
is also a shortcoming. As stated before, when RGB images are
used instead of grayscale image the average color difference
is a bit higher even though a tremendous lowering is achieved
in the cases of maximum color differences. The three images
presented in Fig. 2 are scaled to use the whole gray color map.
Thus, these images are not comparable as such, but each image
shows the distribution of color differences in that certain image.
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MRAIM method is time efficient and rather easy to imple-
ment. It obviously has some shortcomings as described above,
but based on the performed experiments, it preserves the spectral
properties pretty well. Of course, this study was based on
only two images, which were chosen to be rather simplified
objects. The work needed to be done in the future would be the
examination of more challenging objects, in which the details
and the areas of solid colors are very tiny. Furthermore, the
use of camera sensitivities instead of color matching functions
would be recommended.

Acknowledgements
The funding from Kordelin Foundation is gratefully appre-

ciated.

References
[1] C. Pohl, and J. L. van Genderen, Multisensor Image Fusion

in Remote Sensing: Concepts, Methods and applications,
Int. J. Remote Sensing, 19, 823 (1998).

[2] M. I. Smith, and J. P. Heather, Review of Image Fusion Tech-
nology in 2005, Proc. SPIE, pg. 29. (2005)

[3] C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, Synthe-
sis of Multispectral Images to High Spatial Resolution: a
Critical Review of Fusion Methods Based on Remote Sens-
ing Physics, Trans. Geosci. Rem. Sens., 46, 2008.

[4] J. Wald, T. Ranchin, and M. Mangolini, Fusion of Satel-
lite Images of Different Spatial Resolutions: Assessing the
Quality of Resulting Images, Photogramm. Eng. Remote
Sens., 46, 1325 (1997).

[5] A. Toet, and E. M. Franken, Perceptual Evaluation of Differ-
ent Image Fusion Schemes, Displays, 24, 25 (2003).

[6] G. Qu, D. Zhang, and P. Yan, Information Measure for Per-
formance of Image Fusion, Electron. Lett., 38, 313 (2002).

[7] V. S. Petrovic, and C. S. Xydeas, Sensor Noise Effects on
Signal-Level Image Fusion Performance, Inf. Fusion, 4, 167
(2003).

[8] G. Piella, New Quality Measures for Image Fusion, Proc. of
the 7th International Conference on Information Fusion, pg.
542. (2004).

[9] G. Piella, and H. Heijmans, A New Quality Metric for Image
Fusion, Proc. of International Conference on Image Process-
ing, pg. III-173-6. (2003).

[10] A. Loza, T. D. Dixon, E. F. Canga, S. G. Nikolov, D. R.
Bull, C. N. Canagarajah, J. M. Noyes, and T. Troscianko,
Methods of Fused Image Analysis and Assessment, Ad-
vances and Challenges in Multisensor Data and Informa-
tion Processing, NATO Security through Science Series, IOS
Press, 2007.

[11] P. S. Chavez, S. C. Sides, and J. A. Anderson, Comparison
of Three Different Methods to Merge Multiresolution and
Multispectral Data: Landsat TM and SPOT Panchromatic,
Photogram. Engin. Remote Sensing, 57, 295 (1991).

[12] Z. Wang, D. Ziou, C. Armenakis, D. Li and Q. Li, A Com-
parative Analysis of Image Fusion Methods, IEEE Trans
Geosci Rem Sens, 43, 1391 (2005).

[13] G. Piella Fenoy, Adaptive Wavelets and Their Applications
to Image Fusion and Compression, Ponsen & Looijen bv.,
2003.

[14] H. Chang, A. Koschan, B. Abidi, and M. Abidi, Physics-
Based Fusion of Multispectral Data for Improved Face
Recognition, Proc. of 18th International Conference on Pat-
tern Recognition, pg. 1083. (2006).

[15] R. Singha, M. Vatsaa, and A. Noore, Hierarchical Fusion of

Multi-Spectral Face Images for Improved Recognition Per-
formance, Information Fusion, 9, 200 (2008).

[16] V. Bochko, Y. Miyake, N. Tsumura, T. Nakaguchi, and J.
Parkkinen, Image Fusion in Spectral Electronic Endoscope,
Proc. of the 9th International Symposium on Multispectral
Colour Science and Application, pg. 109. (2007).

[17] Z. Wang, D. Li, Q. Li, and V. Tao, M-band Wavelet Trans-
form for the Generation of High-Resolution Multispectral
Images, Can. J. of Remote Sensing, 34, 33, (2008).

[18] http://www.cri-inc.com/downloads/Nuance Brochure.pdf
[19] Wang Z., Wavelet Transform Based Multi-Sensor Re-

mote Sensing Image Fusion, PhD thesis, Wuhan University,
Wuhan, China, 2002.

Author Biography
Oili Kohonen was born in 1978, in Lappeenranta, Finland.

She receiver her M.Sc. and Ph.D. degrees in physics in 2002 and
2007 from the University of Joensuu, Finland.

540 ©2010 Society for Imaging Science and Technology




