
 

 

Noise Analysis of a Multispectral Image Acquisition System 
Noriyuki Shimano, Department of Informatics, School of Science and Engineering, Kinki University,3-4-1, Kowakae, Higashi-
Osaka, Osaka 577-8502, Japan, e-mail:shimano@info.kindai.ac.jp 

 

Abstract 
Prior knowledge of the noise present in a color image 

acquisition device is very important for the recovery of a 
spectral reflectance of an object being imaged, since the 
recovery performance is greatly influenced by the noise. 
 In the previous paper (IEEE Trans. Image Process. 15, 
1848 (2006)), the author proposed a new model to estimate the 
noise variance of an image acquisition system by assuming that 
the noise variance in each channel is equal and showed that 
this model is very useful to accurately recover a spectral 
reflectance of an imaged object. This paper describes an 
extended model for the estimation of the covariance matrix of 
the noise present in an image acquisition system without the 
assumption. It is demonstrated that the proposal overfits the 
noise covariance matrix to learning samples and that the 
recovery performance for the test samples is poor compared 
with the previous model. However this overfitting means that 
the estimates are correctly performed using the proposed 
model. The new model is effective in analyzing the noise 
present in an image acquisition system. 

Introduction 
The noise plays important roles in an image acquisition 

such as the solutions to the inverse problems [1]-[4], the 
optimization of a set of sensors [5] and the evaluation of a set 
of sensors aimed at acquisition of spectral information [6] and 
colorimetric information [7]. The noise in solving inverse 
problems must be defined to include all sensor response errors 
resulting not only from the CCD itself but also from the 
inaccuracies in the sampled spectral characteristics of sensors, 
reflectances of objects and illuminations and from the 
quantization of sensor responses, etc. The noise defined above 
was termed as the system noise [8].         

  As the least square error estimation, the Wiener 
estimation is usually used in solving the inverse problems. 
Prior knowledge of the spectral reflectances of the imaged 
objects and the noise present in the image acquisition system, 
i.e., the system noise, is required for the estimation. However 
the knowledge is usually unknown and it is impossible to use 
the Wiener estimation in solving inverse problems in the actual 
cases. The author already proposed a new model for the 
estimation of the system noise variance using measured 
spectral reflectances of the learning samples and their 
corresponding image data [8]. The estimated noise variance 
agrees fairly well with the noise variance that minimizes the 
value of the mean square error (MSE) between the measured 
and the recovered spectral reflectances of the learning samples. 
 The estimated system noise variance and the 
autocorrelation matrix of the spectral reflectances of the 
learning samples can be used to recover the spectral 
reflectances of the test samples without prior knowledge of 
them. The accuracies of the recovered spectral reflectances 
were compared with other recovery models, and it is found that 
the recovered spectral reflectances by the Wiener estimation 

with the proposed model [8] are more accurate than the others 
when the test samples are different from learning samples [9]. 
In the learning model, the evaluation of the computational 
efficiency, robustness and statistical stability are very important 
[10]. The robustness means that the learning algorithms must 
handle noisy data for real applications and the statistical 
stability means that the performance of the algorithms should 
not be sensitive to the particular training data set. The 
performance of the regression model [11],[12] is not enough 
for test samples, since the model overfits the system noise to 
learning samples [9]. On the other hand the previously 
proposed model gives the robustness to the noise and statistical 
stability [8],[9].  

In the previous model, the system noise was assumed 
independent, identically distributed (i.i.d) random variables 
over each channel. However the noise variance of each channel 
is not always equal. Recovery performances of the previous 
and new models were compared. It was found that the recovery 
performance of the new model is superior to that of previous 
model when the same samples were used for training and test 
samples and that the recovery performance of the new model is 
poor compared with previous model when test samples are 
different from training samples, since the new model overfits 
the covariance matrix to training samples. However this 
overfitting means that the estimates of the covariance matrix 
are performed correctly. In this paper the noise present in a 
multispectral camera was analyzed using the new proposal and 
shows that the proposal is very important for the analysis of the 
influence of the signal power, quantization and sampling 
intervals (over the visible wavelengths) on the noise variance. 

Model 
In this section, a model estimating an covariance matrix of 

the system noise is discussed based on the Wiener estimation, 
since it provides us with a method for the confirmation of the 
accuracy of the estimates by comparing the recovered spectral 
reflectances [8].  

A vector space notation is usually used for the formulation 
of the problems and the visible wavelengths are sampled at 
constant intervals and the sampling number is denoted N. A 
sensor response vector from a set of color sensors for an object 
with an 1N ×  spectral reflectance vector r  can be expressed 
by  
 

erp += SL  ,                    (1) 
 
where p is an 1M ×  sensor response vector from the M 
channel sensors, S is an NM ×  matrix of the spectral 
sensitivities of sensors in which a row vector represents a 
spectral sensitivity of a sensor, L is an NN ×  diagonal matrix 
with samples of the spectral power distribution of an illuminant 
along the diagonal, e  is an 1M ×  additive system noise vector 
as stated above. Object-dependent noise and object-
independent noise have been considered in an image 
acquisition device [13]. The former noise results from the shot 
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noise accompanied with the incidence of intense light into a 
CCD and was observed from the CCD signals [14],[15]. The 
latter noise is usually used for the analysis of color image 
acquisition [16] and was used to solve inverse 
problems[17],[18]. However, from the previous work on the 
system noise, the system noise can be considered as the object 
independent, since the experimental results agree quite well 
with the model based on the assumption of the object 
independence [8]. In this context, the assumptions that r  and 
e  are uncorrelated and the noise-mean is zero are reasonable. 
For abbreviation, let SLSL =  below. The recovered spectral 
reflectance vector r̂  can be given by the Wiener estimation. 

 
pr 1

ges
T
LSSL

T
LSS )RSRS(SRˆ −+= ,                             (2) 

 
where T represents the transpose of a matrix, SSR  is an 
autocorrelation matrix of the spectral reflectances of samples 
which will be captured by a device and the SSR  is expressed by 

{ }T
SS ER rr= , where { }•E  represents an expectation value. 

gesR  in Eq.(2) represents a covariance matrix of the noise used 
for the Wiener estimation. If gesR  is equal to the covariance 
matrix of the system noise, i.e., { }TeeERR eeges == , then the 
Wiener estimation gives the most accurate recovery. However, 
since prior knowledge of the noise is not usually available, 
usually gesR  is simply a guess. The estimation error vector rΔ  
between an actual r  and a recovered vector r̂  for a surface 
reflectance is given by 

 
rrr ˆ−=Δ .                                                       (3) 

 
Since the autocorrelation matrix Rss of surface reflectance 
spectra is symmetrical, it is represented by a set of eigenvectors 
and eigenvalues of the matrix as T

SS VVR Λ= , where V 
represents the basis matrix, i.e., it is expressed by 

( )Nvvv 21V = , where { } N,,1ii =v  represent a set of 
eigenvectors of an autocorrelation matrix. Λ  is an N × N 
diagonal matrix with positive eigenvalues of the matrix along 
the diagonal in decreasing order. Let 21

L
V
L VSS Λ= . The 

recovered spectral reflectance r̂  when 0R ges = , i.e., all 
elements of the matrix gesR  are zero, is expressed by the 
substitution of the relations of T

SS VVR Λ=  and 21
L

V
L VSS Λ=  

into Eq. (2) as 
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The singular value decomposition (SVD) of the matrix of 
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1TV

L
V
L

TV
L )SS(S −  in Eq. (4) can be expressed by 

∑ κ= β
=

−−
1i

Tv
i

v
i

1v
i

1TV
L

V
L

TV
L )SS(S db . Substitution of the expression 

into Eq. (4) and combinig Eqs.(1) and (3) leads to 
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The mean of the autocorrelation matrix of rΔ  for many 
spectral reflectances is given by 
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Let denote the autocorrelation matrix of { }TE rrΔΔ  as 
( )eeges R,RA , then ( )eeR,0A , i.e., the autocorrelation matrix 

when 0R ges = , is given by (for more detail see APPENDIX A) 
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The first and second term on the right hand side of Eq.(7) 
represent the noise independent terms and the third term 
represents the noise dependent term. Eq. (7) can be rewritten as 
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By multiplying both sides of (8) by vectors Tv

mb  and v
nb  from 

left and right sides, respectively, then the use of the orthogonal 
normality of singular vectors leads next equation 
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Note both sides of (9) represent the scalar. By multiplying both 
sides of (9) by vectors v

md  and Tv
nd  from left and right hand 

sides, respectively, and summing both sides over m and n, by 
using the relation of β

β
= =∑ I

Tv
i1i

v
i dd , where βI  represents the 

β×β  identity matrix, then the autocorrelation of the system 
noise eeR  can be expressed as, 
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The above equation can be simplified using the orthogonal 
normality of singular vectors as, 
 

( )∑ ∑ ΛΛκκ=
β

=

β

=

−−

1m 1n

Tv
n

v
m

v
n

21
ee

T21Tv
m

v
n

v
mee VR,0AVR̂ ddbb .                       (11) 

The factor ( )eeR,0A  on the right hand side of Eq.(11) can be 
obtained by recovering spectral reflectances r̂  by the Wiener 
filter with 0R ges =  and averaging the autocorrelation of the 
error ( )( )Tˆˆ rrrr −−  over all learning samples, where r  
represents a measured spectral reflectance. Other factors on the 
right hand side can be computed by the spectral characteristics 
of sensors, illumination and reflectances of the learning 
samples. Therefore, Eq.(11) gives a formula to estimate the 
covariance matrix of the system noise. It is very important to 
note that the spectral reflectances recovered by the Wiener 
estimation with eeR̂  is designed to minimize the MSE, since 
the MSE of the spectral reflectances recovered by the Wiener 
estimation is minimized when { }T

eeges ERR ee==  and the eeR̂  
(in Eq.(11)) is the formulation of { }T

ee ER ee=  including 
( )eeR,0A . 

 
Experimental Procedures and Results 
Experimental Procedures 
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 The same experimental data applied in the previous paper 
[8] were used for the comparison of the recovery performances. 
More detailed experimental conditions and procedures are 
described in the previous paper. In short, experimental 
conditions and procedures are summarized below. A 
multispectral image acquisition system was assembled using 
eight interference filters (Asahi Spectral Corporation) in 
conjunction with a monochrome video camera (SONY XC-75) 
with an optical lens (CANON zoom lens V6×16). The Kodak 
Q60R1 and the GretagMacbeth ColorChecker were illuminated 
by halogen lamp, and their image data were captured by the 
multispectral camera. The image data from the video camera 
were converted to 8bit-depth digital data by an AD converter. 
The sampling intervals of 10nm were used over the 
wavelengths from 400 to 700nm (N=31) in this paper for the 
spectral characteristics of sensors, illumination and 
reflectances. Fig.1 shows the spectral sensitivities of sensors 
used for image capture. Fig.1(a) and (b) show the spectral 
sensitivities of a set of sensors used for Kodak Q60R1 and 
GretagMacbeth ColorChecker, respectively.A halogen lamp 
was used for image acquisition and its spectral power 
distribution is shown in Fig.2. 
 
Experimental Results of the Estimates of the Covariance 
Matrix 
 Before showing the experimental results, it is better to 
explain the previous model [8]. In the previous model, the 
noise covariance matrix gesR  in Eq.(2) was assumed as the 
product of the noise variance 2

eσ  and the identity matrix I, i.e., 
the assumption of IR 2

eges σ=  was used. By changing the noise 
variance 2

eσ  for the Wiener estimation to recover the spectral 
reflectance r̂ , the MSE between the measured spectral 
reflectance and the recovered reflectance is calculated by 

⎭
⎬
⎫

⎩
⎨
⎧ −

2ˆE rr  for all reflectance r . The variance 2
eσ  that 

minimizes the MSE is called as the optimum noise variance 
2
optσ . The optimum noise variance is considered as the actual 

system noise variance, since the values of the MSE is 
minimized when 22

e σ=σ , where 2σ  represents the actual 
system noise variance (for more detail, see Eqs.(8) and (9) in 
ref.8). 
 Table I shows the estimated results for the Kodak Q60R1 
and the GretagMacbeth ColorChecker. In the table, 

( )ee
2
opt R,IMSE σ  is the MSE at IR 2

optges σ=  that minimizes the 
MSE, ( )ee

2 R,IˆMSE σ  is the MSE at IˆR 2
ges σ=  estimated by the 

previous model [8], ( )eeee R,R̂MSE  is the MSE at eeges R̂R =  
estimated by Eq.(11) and the value of the ( ) MRTr ee  
represents the trace of the eeR̂  divided by the M. A bold-faced 
letter in each row of the table shows the minimum value of the 
MSE. The results show that the values of the ( )eeee R,R̂MSE  are 
smaller than that of the ( )ee

2
opt R,IMSE σ  and ( )ee

2 R,IˆMSE σ  when 
the same samples are used for the training and test samples and 
that the eeR̂  is correctly formulated. However, when different 
samples are used for training and test samples, the previous 
model outperforms the new proposal. The results show that the 
new proposal overfits the noise covariance matrix to learning 
samples and that this overfitting means that the estimates are 
correctly performed using proposed model. Fig.3 shows typical 
experimental results of the spectral reflectance recovered by the 
previous and new models. From the experimental results the 
spectral reflectance recovered by the new proposal is more 
accurate than that by the previous model when the same 
samples are used for learning and test samples.  

Since the new proposal gives the noise variance for each 
channel, signal power dependence of the noise variance can 
 

 
                                                (a) 

 
                                                (b) 
Figure1. Spectral sensitivities of a set of sensors used for image 
capture. Figure (a) and (b) represent the spectral sensitivities 
used for Kodak Q60R1 and Macbeth ColorChecker, respectively 

 
 
Figure2. Spectral power distribution of a halogen lamp used for 
image acquisition 
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         Table 1 Estimated parameters  

 

         

 
  
be studied by averaging signal power for each channel. Fig.4 
shows the noise variance as a function of the averaged signal 
power. From the results, it is concludes that the noise variance 
has no correlation with the signal power.  
 To study the influence of the quantization and sampling 
intervals on the noise variance, image data from CCD camera 
(Kodak KAI-4021M) were converted to 16-bit-depth digital 
data by an AD converter. The spectral characteristics of the 
sensitivities, illuminations (Seric Solax XC-100AF) and 
reflectances (Macbeth) were measured over wavelengths from 
400 to 700 nm at 1-nm intervals. Fig.5 shows the noise 
variance as a function of the sampling intervals (over the 
visible wavelengths) and quantization bit-depth (converting 
sensor responses from analog signals to digital), where trace of  

 
                                          (a) 

 
                                    (b) 
Figure 3. Spectral reflectances recovered by the new and 
previous model. Figs(a) and (b) show results for Macbeth  
ColorChecker No. 13 and Kodak Q60R1No.75, respectively  

the estimated correlation matrix Ree divided by the channel 
number M, i.e. M/)R̂(Tr ee , is used for the noise variance.  The 
experimental results show that the system noise variance 
increases with a decrease in the quantization bit-depth below 8 
bit and increases with an increase in the sampling interval 
longer than 20nm. 
 A more direct and simple estimation of the system noise 
variance has been performed by using Eq.(1) in the previous 
paper [8]. The noise variance estimated by { }2

L
12 SEMˆ rp −=σ −  is 

not enough to accurately recover the spectral reflectances, since 
the estimates by this method directly reflect the errors in 
computing a sensor response rp LS=  using the measured 
spectral characteristics of the sensors, illumination and  

 
Figure 4. Noise variance as a function of averaged signal power 
in each channel 
 

 
Figure 5.The influence of sampling intervals and the quantization  
bit depth of the sensor responses on the Trace of Ree divided 
with channel number  

Training          Test          ( )ee
2
opt R,IMSE σ    ( )ee

2 R,IˆMSE σ     ( )eeee R,R̂MSE           2
optσ        2σ̂      ( ) MR̂Tr ee  

   KodakQ60    KodakQ60      0.014799            0.014974              0.011739           5.26e-004  2.91e-004    6.72e-004 
    Macbeth        Macbeth        0.038457              0.038568              0.033286           4.79e-004    3.90e-004    6.31e-004 
   KodakQ60      Macbeth              -                     0.074551              0.098864                   -           2.91e-004    6.72e-004 
    Macbeth       Kodak Q60           -                     0.049293              0.057238                   -           3.90e-004    6.31e-004 
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reflectance of a color (for more detail see ref.8). The same 
thing is true for the estimates by ( )( ){ }T

LLee SSER̂ rprp −−= .  
 
Conclusion 
A new model is proposed for the estimation of the covariance 
matrix of the system noise of a color image acquisition system 
and it was applied to a multispectral image acquisition system 
to show the trustworthiness of the proposal. From the 
experimental results on the proposed model show that the 
system noise is largely uncorrelated and is not identically 
distributed in each channel. Since the covariance matrix 
estimated by the proposal overfits the matrix to learning 
samples, the recovery performance for test samples is poor 
compared with the previous model. However this over fitting 
means that the estimates of the covariance matrix are correctly 
performed using the proposed model. The proposal is very 
important for the noise analysis of an image acquisition system. 
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APPENDIX A: DERIVATION OF Eq. (7)   

For many surface reflectances, the autocorrelation matrix 
of the error vector rΔ  is averaged over the surface reflectance 
spectra and it is given by 
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  The above equation can be rewritten as 
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Note that an operator { }•E  operates only on surface reflectances 

and noise. The relation of { } { } 0EE TT == reer  is used in this  

equation, since the noise and the surface reflectances are 
uncorrelated. If the spectral reflectances of the learning 

s a m p l e s 
are the same for test samples, then { } TT VVE Λ=rr . Let denote 

the first and second term on the right hand side of (A3) FT and 
ST, respectively. The use of the relation of Eq.(4) leads for FT, 
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Using relations of the singular value decomposition of V
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Using the orthogonal normality of singular vectors of V
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second term ST can be written as 
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Combining Eqs. (A5) and (A6) leads to Eq. (9) 
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The proof is completed. 
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