
Spatial and Spectral Analysis and Modeling of Transversal
Chromatic Aberrations and their Compensation
Julie Klein, Johannes Brauers and Til Aach; Institute of Imaging and Computer Vision, RWTH Aachen University; D-52056
Aachen, Germany

Abstract
The wavelength-dependency of the refraction indices in op-

tical systems involves chromatic aberrations: one object point is
not projected on exactly one image point on the sensor plane, but
dispersed depending on its wavelengths in a rainbow-like man-
ner due to the wavelength-dependency. These distortions have
already been analyzed for the three broadband color planes red,
green and blue of an RGB camera for example. As far as the
authors know, no analysis was performed yet for more than three
narrow wavelength bands and each color plane was considered
separately so far.

In this paper, we describe the measurement of chromatic
aberrations for multiple narrowband color channels and extend
the models from the literature to characterize these distortions.
We then link the parameters obtained for all color channels in
order to include the wavelength-dependency into the models of
the distortions. This leads to a more general model for the chro-
matic aberrations, calculating the distortions as a function of
the wavelength and the image position. We then compensate the
chromatic aberrations using these models and finally estimate
their accuracy.

Introduction
Chromatic aberrations are present in nearly every imaging

system. They are caused by the wavelength-dependent indices
of refraction of glasses which are used in a lens. The different
wavelengths reemitted by an object point do not focus exactly
on the same point and thus arrive at the sensor plane at different
positions, which results in different image points for this one ob-
ject point. There are two categories of chromatic aberrations: the
longitudinal chromatic aberrations and the transversal chromatic
aberrations [1]. The longitudinal ones result from the variation of
the focus along the optical axis and cause blurring; the transver-
sal ones result from the displacement of the image points in the
sensor plane and cause color fringes [2]. In this work, we analyze
the transversal chromatic aberrations.

Models and compensation of chromatic aberrations are im-
portant for every optical system dealing with colors and in partic-
ular for the multispectral imaging. Several types of multispectral
cameras use optical bandpass filters to divide the electromagnetic
spectrum into different passbands. Research groups use five to
thirteen bandpass filters [3, 4, 5, 6, 7, 8, 9]. The five to thirteen
different spectral filters give as many grayscale images corre-
sponding to the wavelength bands of the filters. These grayscale
images have to be combined in order to constitute a multispec-
tral image. We estimate the incident spectra from the grayscale
images via Wiener estimation shown in [10, 6] and transform
them to an RGB image; other, more sophisticated methods may
be used [11]. Because of the chromatic aberrations, the grayscale
images are slightly shifted and blurred compared to each other.
This causes color fringes when the different color channels, i.e.,
the different wavelength bands, are combined. The multispec-

tral systems also encounter other aberrations, like the filter aber-
rations discussed in [10]. Analyzing the aberrations separately
allows better models and better compensation, and thus a better
output image.

In prior work, the chromatic aberrations were measured
over the whole image. In [12], beads are stained with three
different narrowband fluorescent dyes simultaneously and the
chromatic aberrations are measured using their weight centers.
In [13, 14, 15], the measurements were performed using edges of
a pattern with known geometry that are detected on three broad-
band color planes (the color planes red, green and blue of the
RGB cameras). In [16], the three color planes of an RGB camera
were also used, but the detected edges were the crossings of a
checkerboard pattern. Our approach generalizes this by detect-
ing the crossings of a checkerboard pattern on seven different
narrowband color channels. The effect of the chromatic aberra-
tions can thus be analyzed in a more precise way than with the
three broadband color channels red, green and blue or than with
only three narrowband color channels from the fluorescent mi-
croscopy.

Some models describing the chromatic aberrations are in-
troduced in the literature: The horizontal and vertical compo-
nents of the lateral chromatic aberrations depend almost linearly
on the position of the image point in [12]. In [13], the displace-
ments between the images of two color planes were fitted with
a cubic spline, separately for the two coordinates of the image.
In [14], a radial correction was computed in order to align the
edges in the red and blue planes to the edges in the green plane.
The radial and decentering distortion from [17] was used in [16],
where the distortion of an image point from a color plane (e.g.,
for the red or the blue color plane) was calculated as a func-
tion of the corresponding image point from the reference color
plane (e.g., for the green color plane). Another model could be
an affine model, in which the displacement of the image point
between two color planes is described by a rotation, a translation
and a scaling [10].

All these models describe relative distortions, since the po-
sition of the image point without any chromatic aberration is not
available. Up to now, the chromatic aberrations of each color
channel were analyzed separately and no link between the chan-
nels was given. Therefore, we analyze here the chromatic aberra-
tions as a function of the wavelength and the image position and
derive a more general model.

In this work, we first describe the experimental setup used
to measure the chromatic aberrations and the observations for the
seven different color channels. We then establish models for the
distortions of the points of interest and we explain how these dis-
tortions are compensated. In the fourth section, we give detailed
results of our analysis and deduce a new model for the chromatic
aberrations, incorporating the wavelength of the observed color
plane. Finally, we conclude the paper with a discussion.
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Physical Background
Each object point is displayed on the sensor plane through

the objective. Since the indices of refraction of the optical ele-
ments are wavelength-dependent, the object point is split into its
spectral components and is thus spread over a rainbow-like cloud
of image points. For example, the blue wavelength band is more
strongly refracted than the red one [18] and in our images, the
image points corresponding to the blue wavelengths are nearer to
the optical axis than those corresponding to the red wavelengths.
This results in color fringes at the edges in the image, as shown
in Fig. 1.

Figure 1. Chromatic aberrations on the bottom left corner of the image of

a checkerboard pattern.

The object points along the optical axis of the objective are
not distorted by the chromatic aberrations: their lines of sight
follow the optical axis and all their image points are located on
the same point (u0,v0)

T , which is the point where the optical
axis intersects with the sensor plane. The optical axis is free of
chromatic aberrations and the point (u0,v0)

T of the sensor is the
center of the chromatic aberrations.

Experimental Setup
To measure the chromatic aberrations, we observe an ob-

ject point and locate its corresponding image points for known
wavelengths, e.g., for seven wavelength bands spread over the
visible spectrum. The object points whose image points have to
be followed are the crossings of a checkerboard pattern. We use
a checkerboard pattern because its crossings are straightforward
to localize. They are detected and their positions are determined
with a subpixel accuracy using the algorithm explained in [19].
The crossings can be localized with an accuracy of about 0.03
pixels for images with low noise levels like ours.

To isolate the image points for known wavelengths, we use
spectral bandpass filters that enable us to allow only one wave-
length band coming from the object point to pass and to hit the
sensor. The choice of the place of the filters in the optical path
matters strongly. Indeed, when the filters are situated between
the object and the sensor, they lead to additional aberrations due
to their different indices of refraction and their different thick-
nesses. These filter aberrations are analyzed in [10]. Such a con-
figuration would prevent the chromatic aberrations from being
measured separately from any other aberration. For this reason,
we place the spectral filters in front of the light source: the scene
is directly illuminated with the wavelength band of interest and
only this wavelength band arrives at the optical system. With this
experimental setup, each wavelength band is isolated on a differ-
ent color channel representing the scene. Each object point then
is projected to several image points on the sensor plane, depend-
ing on the considered wavelength band. The coordinates of the
image points are (uλ ,vλ )

T , with λ the wavelength of the color
channel. In the following, we will use the relative coordinates of

the image points pλ which relate to the center of the distortions
(u0,v0)

T : pλ = (xλ ,yλ )
T = (uλ−u0,vλ−v0)

T .
The seven spectral filters we use have central wavelengths

going from 400 to 700 nm in steps of 50 nm and bandpass widths
of 40 nm and are mounted in a filter wheel (see Fig. 2).

filters
400 nm

450 nm

500 nm

550 nm600 nm

650 nm

700 nm

checkerboard
pattern

monochrome camera

400 500 600 700

τ

nm nm nm nm
λ

Figure 2. Experimental setup to measure the chromatic aberrations: a

checkerboard pattern is illuminated through a narrowband spectral filter and

the scene is recorded by a monochrome camera. The transmission curves

of the seven filters that are included in a filter-wheel are displayed.

Observations
When analyzing the positions of the checkerboard crossings

on the acquired checkerboard pattern (see Fig. 3(a)) for different
wavelength bands, the wavelength-dependency of the lens can
be observed. For increasing wavelengths, the crossings move to-
ward the edges of the image and their displacements exhibit a
radial symmetry around the distortion center. It is then reason-
able to take one of the outer color channels (i.e. whose central
wavelength is the lowest or highest one) as reference channel
to consider the distortions. We selected the 700 nm channel as
reference and the image was focused manually at the reference
wavelength. The vectors from Fig. 3(a) show how the crossings
were displaced relative to the crossings of the reference channel,
with a 50 × magnification. The vectors of the low wavelengths
are longer than those of the high wavelengths. For each cross-
ing, all the displacement vectors relative to the reference channel
have approximately the same direction, as shown in Fig. 3(b).

Models for Chromatic Aberrations
To measure and model the chromatic aberrations, we con-

sider a reference color channel r with center wavelength λr and
another color channel c with center wavelength λc. We then
analyze the distortions of the checkerboard crossings between
the reference color channel and the current color channel. To
simplify notation, the image points of the channel r are writ-
ten (ur,vr)

T instead of (uλr
,vλr

)T and the image points of the
channel c are written (uc,vc)

T instead of (uλc
,vλc

)T . Their cor-
responding relative coordinates are pr = (xr,yr)

T = (ur−u0,vr−
v0)

T and pc = (xc,yc)
T = (uc−u0,vc−v0)

T , (u0,v0)
T being the

center of the chromatic aberrations. The distortions of a color
channel are described by the set of vectors pc−pr for all the
crossings of the checkerboard pattern. The vectors describe rel-
ative distortions, since the reference channel exhibits chromatic
aberrations, too. The aim of this work is to establish a model
for these distortions for the whole image and for the wavelengths
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Figure 3. Displacements of the color channels relative to the reference

channel (a): for each color channel from 400 nm to 650 nm, the displace-

ments of the crossings to the corresponding crossings in the reference

channel 700 nm are displayed with a 50 × magnification. The vectors inside

the black frame are displayed in (b). Each color represents one wavelength

band.

of the visible light. In this section, we will derive a few mod-
els for the chromatic aberrations and explain how the chromatic
aberrations can be compensated.

The chromatic aberrations are first measured on a checker-
board pattern and the parameters of the models are derived. The
models can then be applied to other captured images, even if they
are situated at different distances from the camera, since the dis-
tortions depend only on the angles of the rays arriving at the op-
tical system and not on the object distances.

The objective of each model is to determine an estimate p̂c
of an image point’s position in the current channel, given its
position pr in the reference channel. We start with elementary
affine and radial models for the distortions. We then extend the
model to a parametric model which takes both radial and tangen-
tial components of the distortions into account, where the model
parameters are determined by an optimization procedure. We
will show that this model provides high accuracy for the distor-
tions within each given color channel. In a final step, we add
another model which describes the above optimized parameters
over wavelength, thus enabling us to characterize chromatic aber-
rations also for wavelengths between the color channels.

Affine Model
In this model, it is assumed that the points pr and pc are

related by an affine transformation including a rotation, a trans-
lation and a nonisotropic scaling. The estimated image point p̂af f

c

is calculated as follows using the matrix Tc ∈ R2×3:

p̂af f
c = Tc ·

(
pr
1

)
, (1)

where the elements Tc(1,3) and Tc(2,3) describe a translation
and the other elements describe a rotation and a nonisotropic
scaling.

The distortion ∆eaf f
c = p̂af f

c − pr caused by the chromatic
aberrations is then computed by:

∆eaf f
c (pr) =

(
Tc−

(
1 0 0
0 1 0

))
·
(

pr
1

)
(2)

As shown in the results, this straightforward model compen-
sates some of the distortions, but its approximation errors exceed
those of the following models considerably (see Fig. 7). The
wavelength-dependency of this model was therefore not further
investigated.

Radial Model
A first glance at the displacements of the crossings seems

to show that the distortions exhibit only a radial component (see
Fig. 3(a)). For this reason, we use a model accounting only the
lengths of the distortions with respect to the radii of the cross-
ings. The radius rr = ‖pr‖ of a crossing refers here to the dis-
tance between the crossing of the reference color channel and
the center of the aberrations. Figure 4 shows the lengths of the
distortions for the crossings of each wavelength band as a func-
tion of the radius of the crossings from the reference wavelength
band 700 nm. For each crossing of the reference color channel,
we determine its radius and we examine how it is distorted in
the other color channels and measure the length of this distor-
tion. The relation between radius and lengths of the distortions
can be approximated by a third-order polynomial for each color
channel.

In the radial model, we assume that pr and pc are colinear
and point in the same direction. We choose the 700 nm chan-
nel as reference, consequently pr is longer than pc. The length
of pc−pr is a function fc(rr) of rr = ‖pr‖, as explained previ-
ously. These assumptions lead to the following estimation of the
distortion ∆erad

c :

∆erad
c (pr) = p̂rad

c −pr

= − fc(‖pr‖)
pr
‖pr‖

(3)

As shown in Fig. 4, the function fc(rr) can be approximated
by a third-order polynomial:

fc(rr)≈ lc,1 · r3
r + lc,2 · r2

r + lc,3 · rr + lc,4, (4)

with specific coefficients lc,i, i= 1, . . . ,4, for each color chan-
nel c. The values of these coefficients are provided in the
results in Tab. 1. For each i, these coefficients describe
the chromatic aberrations for the center wavelength λc, λc ∈
{400 nm, 450 nm, 500 nm, 550 nm, 600 nm, 650 nm}, of the i-
th color channel. We will now show that the wavelength-
dependency of these coefficients can, in turn, be modelled para-
metrically, thus allowing to determine chromatic aberrations
also for color channels with other center wavelengths than the
ones above. Towards this end, we describe the wavelength-
dependency of the coefficients lc,i by a third-order polynomial
with coefficients mi, j , j = 1, . . . ,4, as follows:

lc,i ≈ mi,1 ·λ 3
c +mi,2 ·λ 2

c +mi,3 ·λc +mi,4 (5)

518 ©2010 Society for Imaging Science and Technology



0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

400 nm

450 nm

500 nm

550 nm

600 nm

650 nm

radius [pixel]

le
n

g
th

 o
f 

d
is

to
rt

io
n

 [
p

ix
el

]

Figure 4. Lengths of the distortions of the color channels. The dots are

the measurements and the lines are polynomials of third-order fitting them

(coefficients of the fittings: see Tab. 1).

By insertion of Eq. (5) in Eq. (4), the length of the distortion
‖pc−pr‖ can be expressed as f (λ ,rr), a function of the relative
position of the crossing pr and of the wavelength λ . This gener-
alizes to the whole visible spectrum the function fc(rr) that was
only defined for the narrowband color channels. The function
f (λ ,rr) has then 16 coefficients mi, j, i, j=1, . . . ,4:

f (λ ,rr) =
4

∑
i=1

4

∑
j=1

mi, j ·λ 4− j · r4−i
r (6)

As shown in the results (Fig. 6), this model captures radial
distortions almost perfectly. Still, a slight tangential error, which
increases with the distance to the center of distortion, remains.
Next, we therefore take these tangential distortion components
into account as well.

Radial and Tangential Model
The mathematical description of lateral chromatic variation

of the distortion in [17] has been expanded by an extra first order
term for the additional lateral color distortion by [16] and is given
by the following equations:

∆ertm
c (pr) = p̂rtm

c −pr

=

(
∆ertm

c,x (pr)

∆ertm
c,y (pr)

)
(7)

∆ertm
c,x (pr) = nc,1xr +nc,2xrr2

r +nc,3(3x2
r + y2

r )

+2nc,4xryr

∆ertm
c,y (pr) = nc,1yr +nc,2yrr2

r +2nc,3xryr

+nc,4(x2
r +3y2

r ) (8)

where p̂rtm
c is the estimate of the image point of the current color

channel by this model and pr is the image point of the reference
color channel. In Eq. (8), nc,1 reflects the linear dependency of
the refraction index of a lens on the wavelength within the visible
spectrum [20], and nc,2, nc,3 and nc,4 are parameters of primary
optical aberrations (spherical aberrations and coma) [2]. To each
color channel c correspond different parameters nc,i, i = 1, . . . ,4.

The parameter vector θ̂ rtm
c = (u0,v0,nc,1,nc,2,nc,3,nc,4)

T is
calculated by solving a nonlinear least squares problem where

the model error, i.e., the difference between the estimated and
the measured chromatic aberrations, has to be minimized with
the cost function ‖∆ertm

c (pr)− (pc−pr)‖
2. A Gauss-Newton

method is used to find the solution. This method finds the solu-
tion of the nonlinear least squares problem by solving a sequence
of linear least squares problems [21]. The parameter vector is
first initialized, e.g., with θ̂ 0

c = (640,512,0,0,0,0)T for images
of the size 1280× 1024 pixels. An iteration loop then searches
the parameter vector θ̂ k+1

c using the θ̂ k
c from the previous itera-

tion until it converges: the cost function is linearized near θ̂ k
c and

this linearized function is used as a cost function to find θ̂ k+1
c .

The wavelength-dependency of this model is further ana-
lyzed in the following subsection.

Radial, Tangential and Wavelength-Dependent
Model

The values of the parameters nc,i, i=1, . . . ,4 are displayed
as a function of the wavelength λ in Fig. 5 by asterisks. They can
be approximated by a third-order polynomial of the wavelengths.
The polynomial resulting from this approximation is displayed as
a dashed line. Considering the nc,i, i=1, . . . ,4, as functions of the
wavelengths is a first step: we now include also the dependency
of the parameters on the wavelength in the optimization.
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(a) Values of nc,1 ·102
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Figure 5. Comparison of the values of the parameters nc,i, i=1, . . . ,4. The

asterisks represent the parameters from the radial and tangential model,

the dashed lines are the fittings of these parameters using a third-order

polynomial and the solid lines are the results of the radial, tangential and

wavelength-dependent model.

Each parameter nc,i, i = 1, . . . ,4 can be replaced by a
wavelength-dependent representation in the same way as the pa-
rameters lc,i in Eq. (5):

nc,i ≈ qi1 ·λ 3
c +qi2 ·λ 2

c +qi3 ·λc +qi4, (9)

where qi j, j = 1, . . . ,4, are the coefficients of the approximation
of nc,i by a third-order polynomial.

The coefficients qi j are then included in the previous
model of the chromatic aberrations (i.e., the radial and tangen-
tial model). The distortions of this new model including the
wavelength-dependency are then ∆ewl = (∆ewl

x ,∆ewl
y )T . The two

coordinates of the distortions are defined as follows:
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∆ewl
x (λ ,pr) = (q11λ

3 +q12λ
2 +q13λ +q14)xr

+ (q21λ
3 +q22λ

2 +q23λ +q24)xrr2
r

+ (q31λ
3 +q32λ

2 +q33λ +q34)(3x2
r + y2

r )

+ 2(q41λ
3 +q42λ

2 +q43λ +q44)xryr

∆ewl
y (λ ,pr) = (q11λ

3 +q12λ
2 +q13λ +q14)yr

+ (q21λ
3 +q22λ

2 +q23λ +q24)yrr2
r

+ 2(q31λ
3 +q32λ

2 +q33λ +q34)xryr

+ (q41λ
3 +q42λ

2 +q43λ +q44)(x2
r +3y2

r )

(10)

The 16 parameters qi j and the coordinates of the center of
the chromatic aberrations (u0,v0)

T form the vector θ̂ wl that de-
scribes the model of the aberrations over the whole wavelengths
range: θ̂ wl = (u0,v0,

{
qi j

}
i=1,...,4, j=1,...,4)

T .

The parameter vector θ̂ wl can then be calculated like the
parameter vector θ̂ rtm

c was in the radial and tangential model, i.e.,
by minimizing a quadratic cost function using a Gauss-Newton
scheme. The difference here is that the cost function takes into
account the model errors for all the color channels and not only
for one color channel separately. The advantage of this model
is that all the parameters are optimized at the same time. The
results of this optimization are shown in Fig. 5: the solid lines are
the third-order polynomial using the optimized coefficients qi j.
The values are quite close to those from the radial and tangential
model.

Compensation
After the chromatic aberrations have been characterized

with one of the previous models, the compensated images can
be computed. The compensation uses the model of the aberra-
tions for the current spectral channel to make it match the ref-
erence spectral channel. The compensated image of the current
channel has to be equidistantly sampled, therefore we start with
the compensated coordinates of the output image that cover all
1280× 1024 pixels and go back to the distorted coordinates of
the input image. The distorted coordinates can be estimated with
p̂c = pr +∆ec. The pixel values are transferred from the coor-
dinate p̂c in the distorted image to the coordinate pr in the final
compensated image using bilinear interpolation. All the chan-
nels - except the reference channel - are processed to complete
the compensation of the distortions.

Results
We use a Sony uEye UI2240 CCD camera with a chip size

of 7.60 mm ×6.20 mm and a resolution of 1280×1024 pixels.
Our lens is a Tarcus TV Lens 8 mm F1.3. The distance between
the checkerboard pattern and the lens is approximately 40 cm. As
shown in Fig. 1, the chromatic aberrations result in color fringes
on the edges. The distortions between two color channels can be
up to 3 pixels (see Fig. 4).

At the beginning of this paper, we explained that placing the
spectral bandpass filters between the illumination source and the
checkerboard pattern avoids aberrations due to the filters them-
selves [10]. However, since many paper sheets contain optical
brightener, the irradiated light on the paper may be reemitted in a
different wavelength range due to fluorescence. This is an issue
for color channels close to the ultraviolet like 400 nm. Even the
paper we used that was labeled ”without any optical brightener”
(GMG ProofPaper semimatte 250) was still fluorescent. The re-
sults concerning the 400 nm channel must thus be considered
carefully.

Dependency on the Wavelengths
In the radial model, for each color channel, the lengths of

the distortions are expressed as a function of the distance to the
distortion center in the reference color channel (see Fig. 4). It
is possible to approximate these lengths by a third-order poly-
nomial of the radius and the coefficients of Eq. (4) are shown in
Tab. 1. The coefficients lc,i regarded as functions of the wave-
length can in their turn be approximated by a third-order polyno-
mial of the wavelength. The radial model, which only uses the
approximated lengths of the distortion and assumes that the dis-
tortion is radial, can thus be integrated into a global model, which
models the distortions as a function of both the wavelength and
the distance to the distortion center, as defined in Eq. (6). Fig-
ure 6 shows the error vectors of the radial model: they all have
a direction perpendicular to the line joining the crossings to the
center of the distortions. The errors of the radial model are thus
only tangential.

Table 1. Coefficients of Eq. (4).
channel c lc,1 ·109 lc,2 ·106 lc,3 ·103 lc,4 ·102

450 nm −7.080 2.143 5.762 13.50
500 nm −4.939 1.846 4.752 10.42
550 nm −3.581 1.616 3.495 8.023
600 nm −2.388 1.323 2.177 5.983
650 nm −1.163 0.7001 1.105 3.365

error 0.1 pixel

Figure 6. The errors of the radial model have tangential components. The

center of the image is marked by a red cross. The errors are displayed with

a 1000 × magnification and the colors coding the wavelength bands are the

same as in Fig. 3.

The radial and tangential model exhibits parameters nc,i,
i= 1, . . . ,4, with a strong wavelength-dependency, as shown in
Fig. 5. The first step was to consider the fitted parameters, i.e.,
the values situated on the dashed line of this figure instead of the
values marked by the asterisks. This did not lead to more errors
in the model.

The next step was to directly include the coefficients qi j of
the approximation of the parameters nc,i with qi1λ 3

c + qi2λ 2
c +

qi3λc + qi4 in the optimization. This model including the
wavelength-dependency led to almost the same errors and there-
fore confirmed the validity of the idea of wavelength-dependency
of the model. The resulting fittings of the parameters nc,i, i=
1, . . . ,4 are given in Tab. 2.
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Table 2. Approximation of the parameters nc,i, i=1, . . . ,4, using
third-order polynomials.

nc,1 = −4.893 ·10−10 ·λ 3 +8.186 ·10−7 ·λ 2

−4.293 ·10−4 ·λ +6.635 ·10−2

nc,2 = −6.634 ·10−17 ·λ 3 +1.848 ·10−13 ·λ 2

−1.640 ·10−10 ·λ +4.721 ·10−8

nc,3 = 2.561 ·10−15 ·λ 3 +−2.545 ·10−12 ·λ 2

+1.542 ·10−10 ·λ +2.822 ·10−7

nc,4 = 1.868 ·10−15 ·λ 3−4.876 ·10−12 ·λ 2

+3.962 ·10−9 ·λ −1.030 ·10−6

Accuracy of the Models
After these results concerning the relation between param-

eters of the models and the wavelength of a color channel, we
show the accuracy of the four presented models in three different
ways.

The errors of the estimated distortions are
‖∆ec(pr)− (pc−pr)‖, i.e., the difference between the es-
timated chromatic aberrations ∆ec(pr) and the measured
chromatic aberrations pc − pr. They are calculated for all
crossings contained in the image. In that way, we obtain the
mean and maximum errors for each color channel. These errors
are displayed in Fig. 7. We can see that the affine model is the
least precise one, since its mean and maximum errors are always
way above the errors of the other models. Its maximum error
is even above 0.2 pixels for the 450 nm, 500 nm and 550 nm
channels. For this reason, the wavelength-dependency of the
coefficients of the matrix Tc from the affine model was not
analyzed further. The mean errors of the three other models lie
below 0.054 pixels and their maximum errors lie below 0.134
pixels (respectively 0.038 and 0.088 pixels if we do not consider
the purely radial model).
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Figure 7. Errors of the estimated distortions for the presented models: the

solid lines represent the mean errors and the dashed lines the maximum

errors.

The accuracy of the models can also be evaluated by the

RGB images that are produced by the combination of the differ-
ent color channels, like Fig. 1. Color fringes are clearly visible at
sharp transitions between white and blacks regions in the image.
They are due to poor compensation of the chromatic aberrations
on the separate color channels before the combination. Color
fringes are also visible on the left column of Fig. 8. The tran-
sitions between white and black squares are colored with large
orange and blue fringes when the chromatic aberrations are not
compensated (Fig. 8(a)). Our results show that the affine model
is not adequate for the chromatic aberrations, since green and
purple color fringes are still clearly visible in Fig. 8(b). The
three other models (i.e., the radial model, the radial and tangen-
tial model and the model including the wavelength-dependency)
present quite similar accuracy with practically no color fringes in
Fig. 8(c).

(a)

(b)

(c)

Figure 8. Visualization of the chromatic aberrations in the original im-

age (a) and their correction with an affine model (b) and with the radial, tan-

gential and wavelength-dependent model (c). The results of the radial model

and of the radial and tangential model are similar to the result (c). The left

column shows a part of the checkerboard pattern where color fringes can

be seen, the right column shows the histograms of the RGB images.

The color fringes can also be evaluated in histograms of
the RGB images. Since we acquired a pattern with only black
and white tiles, we would expect all color values to lie on the
gray line, which is the diagonal joining the points (0,0,0)T and
(1,1,1)T in the RGB space. However, because of the chromatic
aberrations, the values are spread far from this diagonal. The
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right column of Fig. 8 shows the histograms of the RGB im-
ages. Without any compensation of the aberrations, the values
are far from being only gray (Fig. 8(a)). After utilization of the
affine model, the values are closer to the diagonal (Fig. 8(b)).
The values closest to gray values are showed in Fig. 8(c): they
are obtained with the three other models.

Conclusion
We have measured the chromatic aberrations for different

wavelength bands by illuminating a checkerboard pattern with
a narrowband light source at different wavelength bands. For
our camera system, the image position displacements between
two spectral bands are up to 3 pixels. We investigated the chro-
matic aberrations with several existing models and analyzed the
wavelength-dependency of the model parameters. We showed
that the parameters can be modeled by a third-order polynomial
with respect to the wavelength. We furthermore extended an
existing model to include a wavelength-dependency: the model
computes the image displacement due to chromatic aberration
as a function of the wavelength and the image position and its
parameters are jointly optimized. The maximum error of this
model lies below 0.088 pixel – when a compensation of images
including chromatic aberration is performed, practically no visi-
ble artifacts remain after applying the algorithm.
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