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Abstract
The goal of this work is to present and review two new image

difference metrics, named SDOG −CIELAB and SDOG −DEE.
These metrics are along the same lines as the standard S-
CIELAB metric (Zhang and Wandell, 1997), modified to include
a pyramidal subsampling, the Difference of Gaussians receptive-
field model (DOG) (Tadmor and Tolhurst, 2000), and the ΔEE
color-difference formula (Oleari et al., 2009). The DOG model
and the ΔEE formula have been shown to improve respectively
contrast measures and image quality metrics (Simone et al.,
2009). Extensive testing using 29 state-of-the-art metrics
and six image databases has been performed. Although this
new approach is promising, we only find weak evidence of
effectiveness. Analysis of the results indicates that the metrics
show fairly good correlations over particular test images, yet
they do not outperform the most common objective quality
measures.

Introduction
In the field of digital imaging, technology advancements

are rapid, and new methods are frequently proposed to deal
with the limitations of various imaging systems. Images are
subject to a wide variety of distortions, such as compression
artifacts and noise. For this reason, reliable quality measurement
is needed to evaluate the quality of digital images. Subjective
rating by human observers has been the most precise way to
measure Image Quality (IQ), but it is often time and resource
demanding. Objective evaluation has de facto been proposed.
In this paper, we focus on one objective method to measure
IQ, IQ metrics. An IQ metric usually aims to mathematically
predict human visual perception. Although some metrics closely
simulate this perception, scientific research has not yet been
able to provide a carbon copy of the Human Visual System
(HVS). This accounts for the outstanding number of IQ metrics
that have been developed so far [1], and not all of them show
consistency with subjective evaluation. The yardstick to judge
the performance of a metric is a combination of simplicity,
modularity, prediction accuracy, and low computational cost.
Because of the computational complexity and the multifaceted
aspects of IQ, we focus on Image Difference (ID) which is the
first step to be able to calculate IQ [2].

We will only consider full-reference IQ metrics, i.e.,
metrics assuming that an original image is available. These
bivariate quantitative measures usually follow the same general
framework. The original image and its reproduction are first
transformed into a suitable color space, preferably a perceptually
uniform one. Then a simulation of the HVS is carried out,
from simplistic methods, as smoothing the image by a local
neighborhood, to more intricate methods, as using Contrast
Sensitivity Functions (CSFs). In most cases, these metrics

eventually perform a calculation of difference using a color-
difference formula. We put forward two new ID metrics inspired
from the S-CIELAB framework [3], though built upon a DOG
filtering, which has been shown to improve contrast measures
[4, 5].

First, an insight into the state of the art will be
provided, followed by a description of the proposed metrics
and the common IQ metrics selected to make a comprehensive
comparison. We will assess the performance of the IQ metrics
across several image databases, and subsequently analyze and
discuss the results. Finally we conclude and propose future work.

State of the Art
The CIELAB color space specification is a modified

version of Adam’s chromatic value diagram using a nonlinear
transformation of the CIE XY Z tristimuli. It was initially
developed for color patches to provide a perceptually uniform
color space and it adopts the Euclidean distance, thus providing a
computationally simple way to measure color differences. When
dealing with digital images, the ΔE∗

ab formula is usually utilized
to calculate the color difference between a reference image and a
sample image in each pixel separately.

In 1997, Zhang and Wandell heralded a new era in objective
IQ assessment by introducing a spatial extension to the CIELAB
color difference named S-CIELAB [3], that was laid out because
ΔE∗

ab does not correlate properly with perceived IQ. The main
thrust of their research was to offer both a spatial filtering to
simulate the blurring of the HVS and a consistency with ΔE∗

ab
for large uniform areas. In the S-CIELAB framework, the
first step is a separation of the images into an opponent-color
space (achromatic, red-green, and blue-yellow space). Each
opponent color image is then convolved with a two-dimensional
spatial kernel determined by the visual spatial sensitivity of
that color dimension. The original S-CIELAB uses unit sum
kernels to filter the independent channels. The filtered images are
finally transformed back to CIE XY Z and then to CIELAB, and
pixelwise difference are computed using the CIELAB formulae.
S-CIELAB is often thought of as a benchmark metric because of
its implementation simplicity and because it has inspired many
other IQ metrics, such as SHAME [6], S−CIELABJOHNSON [7],
and S-DEE [8].

Latterly, the ΔEE color-difference formula has been
published [9]. It is a Euclidean formula that was initially devised
for small-medium color differences in the log-compressed OSA-
UCS space. The OSA-UCS color-appearance system was
developed by the Committee on Uniform Color Scales of the
Optical Society of America whose purpose was to realize a space
of ceramic tile colors with perceived uniform color scales. The
investigation on the color opponencies showed that the OSA-
UCS color space has a particular structure that can be closely
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related to a possible model of the human visual processing
[10, 11].

Contrast is an important image attribute that falls under
the umbrella of IQ [12]. It is linked to saturation and spatial
resolution, since higher saturation will usually increase the
variance of the image, and higher spatial resolution will enable an
observer to see more details. Measuring contrast is a challenging
assignment. Many parameters, such as viewing distance, light
conditions, image content, memory color, experience, or the
contextual dependence on the observer task, affect how observers
perceive the scene. The historical milestones in the search for
a characterization of this attribute consist of global measures,
which assume that the response of the HVS depends much less on
the absolute luminance than on the relation of its local variations.
These global measures are usually not suitable for measuring
perceived contrast of real visual configurations since they exhibit
many shortcomings, one of them being that a few points of
extreme brightness or darkness can determine the contrast of the
whole image [13].

Tadmor and Tolhurst [4] developed a local contrast measure
based on the DOG receptive-field model, modified and adapted
to natural images. The conventional model describes the spatial
sensitivity in the center of receptive fields (central component)
by a bi-dimensional Gaussian with a peak amplitude at 1.0:

Center(x,y) = exp
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where x and y indicate the row and the column of the pixel
(x,y), and the radius rc represents the distance beyond which the
sensitivity declines following 1/e regarding to the peak level.

The surround component is represented by a Gaussian curve
as well, with a larger radius rs:
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the scaling factor 0.85
(

rc
rs

)2
fixes the integrated sensitivity of

the surround component so that it is equal to 85% of that of the
center. For a central point of the receptive-field positioned at
(x,y), the output of the center component for an image pixel at
position (i, j) is given by:

Rc = ∑
i

∑
j

Centre(i−x, j−y)Picture(i, j),

while the output of the surround component is:

Rs = ∑
i

∑
j

Surround(i−x, j−y)Picture(i, j).

The conventional model assumes that the response of a
neurone is only determined by local luminance differences
between the receptive-field center and surround:

DOG(x,y) = Rc(x,y)−Rs(x,y).

Three criteria for the measure of contrast were proposed,
where the response gain is set by the local mean luminance:

C(x,y) =
Rc(x,y)−Rs(x,y)

Rc(x,y)
,

C(x,y) =
Rc(x,y)−Rs(x,y)

Rs(x,y)
,

C(x,y) =
Rc(x,y)−Rs(x,y)
Rc(x,y)+Rs(x,y)

.

In 2004 Rizzi et al. proposed the RAMMG contrast measure
[14]. In this measure, a transformation from RGB to the CIELAB
color space is first applied, followed by a pyramidal subsampling
of the image to various levels. A calculation of the local contrast
in each pixel is carried out by taking the average of absolute value
difference between the lightness channel value of the pixel and
the surrounding eight pixels, resulting in a contrast map for each
level separately. The final overall measure is a recombination of
the average contrast for each level.

Following the similar approach introduced in RAMMG,
Rizzi et al. proposed in 2008 the Retinal-like Subsampling
Contrast algorithm (RSC) [5]. The RSC works with the same
pyramid subsampling as RAMMG, but it computes for each pixel
of each level the DOG contrast calculation, and this computation
is performed separately for the lightness and the chromatic
channels. The three measures are then combined with different
weights.

Simone et al. [15] developed shortly afterwards a weighted
level framework (WLF) as an evolution of the previous contrast
measures. The main improvements are the use of antialiasing
filtering in the pyramid construction combined with a weighted
recombination of the local contrast maps. The measure can be
extended to different color spaces and is not limited to CIELAB,
as RSC and RAMMG.

From Contrast to Image Difference : Two
New Metrics

Two new metrics are proposed referred as SDOG −CIELAB
and SDOG−DEE. They are in line with the S-CIELAB approach,
but the spatial extension is based on the work initiated by Rizzi
et al. [14] and refined by Simone et al. [8]. The improvements
encompass a multi-level approach, the substitution of the original
S-CIELAB spatial filtering with a DOG calculation, and the use
of the ΔEE color-difference formula. The general workflow of
the metrics is as follows (Figure 1):

• The original image and its reproduction are first converted
into the CIELAB color space for SDOG −CIELAB and into
CIE XY Z for SDOG −DEE.

• The images are subsampled to various levels afterwards.
The undersampling is simple since the images are halfed,
and the antialiasing filtering avoids artifacts at low
resolutions.

• A pixelwise neighborhood contrast calculation is executed
in each level using the DOG on the lightness and on the
chromatic channels separately, thus providing local contrast
maps for each level and each channel.

• Local contrast errors are computed using ΔE∗
ab for SDOG −

CIELAB or ΔEE for SDOG −DEE.
• A weighted recombination of the local contrast maps is

finally computed, resulting in global ID metrics.

These metrics grew out of research on contrast measures,
therefore one could expect the highest correlations with images
containing significant variations in contrast. The DOG model
was chosen as a surrogate to the CSF filtering because it has
revealed to be beneficial in the identification of edges, while
the CSFs are mainly used to modulate the less perceptible
frequencies. The ΔEE formula was selected because it is
statistically equivalent to CIEDE2000 in the prediction of many
available empirical datasets, but with greater simplicity and clear
relationships with visual processing.
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Once that local contrast maps are generated for each level,
how to reduce the concept of contrast from local values at each
pixel location to a single number representing the global ID is an
ongoing debate. The simplest strategy is taking the mean of each
level and averaging all together.

These two new metrics perform a weighted recombination
of the levels, given by the following equation:

GlobalID =
1
Nl

Nl

∑
l=1

λl · cl ,

where Nl is the number of levels, cl is the mean contrast in the
level l, and λl is the weight assigned to each level l.

Original Reproduction

Color space transformationL∗a∗b∗ XYZ

Subsampling with antialiasing filter

Pyramid levels

Calculation of the local contrast

Local contrast maps

Color difference calculationΔE∗
ab ΔEE

Pyramid of local

contrast maps difference

Weighted recombination

Global image difference measure

Figure 1: Workflow of the proposed metrics. The metrics are
similar to the S-CIELAB described by Zhang and Wandell.
The improvements encompass a multi-level approach, the
substitution of the S-CIELAB spatial filtering with a DOG
calculation, and the use of the ΔEE color-difference formula.

We selected several parameters in order to see whether a
particular configuration would result in better adequacy with
subjective evaluation. Table 1 describes the different values of
the central component and surround component of the DOG
filter, the nature of the subsampling, and the type of weighting
levels.

Parameter Set 1 Set 2 Set 3 Set 4 Set 5
rc (pixel) 1 1 2 3 2
rs (pixel) 2 2 3 4 4

Type of pyramid P1 P1 P1 P1 P1
Type of 1:1 Var. Var. Var. Var.

weighting levels

Table 1: Set of parameters for SDOG −CIELAB and SDOG −

DEE. The way of building the pyramid is expressed by the
series P1 = 1,

1
2 ,

1
4 ,

1
8 ,

1
16 , ... The variance (Var.) was used to give

importance to high-resolution levels

The variance was used for the weighting level parameters
so as to give importance to high-resolution levels, and because it
could be a possible key to improve perceptual ID metrics, as it
has been proven for measuring contrast [15].

For a detailed overview of the parameters, we refer the
reader to Simone et al. [13].

Evaluation of the Proposed Metrics
We carried out an extensive evaluation of the new metrics

by selecting a multitude of test images. Among the few
public databases providing images for evaluation of IQ metrics,
we used the Tampere Image Database 2008 (TID2008) [16]
and the IVC image database [17], together with four datasets
containing respectively luminance changed images [18, 19],
JPEG and JPEG2000 compressed images [20], images with
global variations of contrast, lightness, and saturation [21], and
gamut mapped images [22, 23].

The performance in correlation for each metric is calculated
by a comparison between the perceptual difference issued from
psychophysical experiments and the difference calculated by the
metric. We opted for three standard types of correlation:

• The product-moment correlation coefficient or Pearson’s
correlation coefficient, which assumes a normal
distribution in the uncertainty of the data values and
that the variables are ordinal.

• The Spearman’s rank-correlation coefficient, which is a
non-parametric measure of association based on the ranks
of the data values, that describes the relationship between
the variables without making any assumptions about the
frequency distribution.

• The Kendall’s tau-rank correlation coefficient, which is a
non-parametric test used to measure the strength of the
dependence between the variables being compared when
the data are in ordinal form.

In addition to the metrics previously introduced, we also compare
with:

S-CIELAB-JOHNSON [7]: The S −CIELABJOHNSON
metric works as the traditional S-CIELAB, but the spatial filters
have been improved with different CSFs.

S-DEE [8]: This metric, proposed by Simone et al., is a
modification of the S-CIELAB from Johnson, where the ΔE∗

ab
color-difference formula is replaced with the ΔEE formula.

Hue angle algorithm [24, 25]: This algorithm is based on
the fact that systematic errors over the entire image are quite
noticeable and unacceptable. The metric is based on the hue
histogram and uses the ΔE∗

ab as color-difference formula.
SHAME and SHAME-II [6]: The Spatial Hue Angle

MEtric (SHAME) proposed by Pedersen et al. can be considered
as the combination of the original S-CIELAB and the original
hue angle algorithm. SHAME-II is a variation of SHAME that
applies the filtering used by Johnson and Fairchild [7].

Universal Image Quality [26]: The Universal Image
Quality (UIQ) is a mathematically defined IQ metric for
grayscale images. The index models any distortion as a
combination of loss of correlation, luminance distortion, and
contrast distortion.

Structural similarity [27]: The Structural Similarity
(SSIM) index is based on the UIQ. It defines the structural
information in an image as those attributes that represent the
structure of the objects in the scene, independently of the average
luminance and contrast. The comparisons are done for local
windows in the image, and the overall IQ is the mean of all these
windows.
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SSIM-IPT [28]: This color extension of the previous metric
calculates the SSIM for each channel of the IPT color space.
Then it combines all the three channels using the geometrical
mean.

Qcolor [29]: This color image fidelity metric is also derived
from the UIQ. The UIQ is performed on each channel in the l, α ,
and β channels, that result from a transformation of the LMS
space. The overall quality is a combination of the results for the
three channels.

Visual Signal-to-Noise Ratio [30]: The Visual Signal-to-
Noise Ratio (VSNR) quantifies the visual fidelity of natural
images based on near-threshold and suprathreshold properties of
human vision by using wavelet-based models.

Visual Information Fidelity [31]: This metric is based on
the HVS and uses an additive white Gaussian noise model. It
quantifies the information content of the reproduction relative to
the information in the original image. The natural scene model
used is a Gaussian scale model in the wavelet domain.

HVS REAL [32]: This image similarity metric is based on
a multiscale model of the HVS that includes different channels
accounting for perceptual phenomena such as color, contrast,
color-contrast, and orientation selectivity. Features are extracted
from these channels to create an aggregate measure of similarity
using a weighted linear combination of the feature differences.

PSNR-HVS [33]: This algorithm computes a modified
version of the Peak-Signal-To-Noise ratio (PSNR), where a
scanning window is used to remove mean shifting and contrast
stretching in order to take into account spatial sensitivity of the
HVS.

PSNR-HVS-M [34]: PSNR-HVS-M is an enhancement of
PSNR-HVS that includes notably a different reduction by values
of contrast masking determined by means of CSF.

Adaptive Bilateral Filter [35]: This metric uses a bilateral
filter, which avoids the loss of edge information when smoothing,
that was optimized to be adaptive to corresponding viewing
conditions and image entropy.

We also selected standard color-difference formulae (ΔE∗
94

and ΔE∗
00) and numerical objective quality measures (MSE,

RMS, PSNR, structural content, average difference, N-cross
correlation, correlation quality, maximum difference, and

image fidelity) [36, 37]. These latter are straightforward metrics
designed to quantify the closeness of the altered and reference
image fields and thus do not take into consideration the viewing
conditions or any feature of the HVS.

For an overview of these IQ metrics and others, we refer the
reader to Pedersen and Hardeberg [1].

Evaluation Using the TID2008 Database
The TID2008 database contains a total of 1700 images, with

25 reference images and 17 types of distortions over 4 distortion
levels (Figure 2 and Table 2). The mean opinion scores (MOS)
are the results of 654 observers attending the experiments. No
viewing distance is stated in the TID database, therefore we have
used a standard viewing distance for the metrics requiring this
setting.

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

(f) Image 6 (g) Image 7 (h) Image 8 (i) Image 9 (j) Image 10

(k) Image 11 (l) Image 12 (m) Image 13 (n) Image 14 (o) Image 15

(p) Image 16 (q) Image 17 (r) Image 18 (s) Image 19 (t) Image 20

(u) Image 21 (v) Image 22 (w) Image 23 (x) Image 24 (y) Image 25

Figure 2: The TID2008 database contains 25 reference images
with 17 types of distortions over 4 levels.

Dataset
Type of distortion Noise Noise2 Safe Hard Simple Exotic Exotic2 Full

1 Additive Gaussian noise + + + - + - - +
2 Noise in color components - + - - - - - +
3 Spatially correlated noise + + + + - - - +
4 Masked noise - + - + - - - +
5 High frequency noise + + + - - - - +
6 Impulse noise + + + - - - - +
7 Quantization noise + + - + - - - +
8 Gaussian blur + + + + + - - +
9 Image denoising + - - + - - - +

10 JPEG compression - - + - + - - +
11 JPEG2000 compression - - + - + - - +
12 JPEG transmission errors - - - + - - + +
13 JPEG2000 transmission errors - - - + - - + +
14 Non eccentricity pattern noise - - - + - + + +
15 Local block-wise distortion - - - - - + + +
16 Mean shift - - - - - + + +
17 Contrast change - - - - - + + +

Table 2: Overview of the distortions in the TID database and how they are related to the tested subsets. The database contains 17 types
of distortions over 4 distortion levels. The sign ”+” indicates that the distortion type was used to alter the images of the subset and the
sign ”-” that it was not considered for this subset.
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Figure 3: Pearson correlation coefficients for SDOG −CIELAB and SDOG −DEE based on the TID2008 database. The correlations are
higher for the datasets Noise2, Safe, Hard, and Simple. The Spearman and Kendall correlations follow the similar trend.

Figure 3 shows that the two proposed metrics have low
performance over both the image datasets and the full database.
We can see that there are differences in the correlations
depending on the selected configuration. In particular, SDOG −

CIELAB shows the best correlations with the 1st set of
parameters and SDOG − DEE with the 4th set of parameters.
We used only the first four sets of parameters to calculate
SDOG − CIELAB since the 5th configuration resulted in an
unstable metric. We can see that the differences between the four
correlations are small.

The correlations for all the IQ metrics are listed in Table 3.
We found that SDOG −CIELAB and SDOG −DEE are little better
than simple color-difference formulae ΔE∗

ab and ΔEE , as well as a
few IQ metrics, such as S-DEE, SHAME, S−CIELABJOHNSON,
and the hue angle algorithm. However, we see that all these
correlations remain weak since they are under 0.5. Conversely,
other metrics, such as UIQ, VIF, P-HVS and P-HVS-M, are more
capable of predicting perceived image differences.

When looking at specific distortions (Table 2), SDOG −

CIELAB does not perform well. The highest Pearson correlation
coefficients are 0.511 on the Simple dataset and 0.513 on the
Safe dataset containing noise, blurring, and compression errors
(Figure 3), with a best Pearson correlation for the full database
of 0.385 (Table 3). SDOG − DEE shows almost the same
correlations as SDOG −CIELAB for the full database, with a
best Pearson correlation of 0.363. We found that SDOG −DEE
has higher correlation coefficients for the specific distortions
Noise2, Safe, Hard, and Simple. This suggests that the metric
is likely to be used to predict perceived image difference with
images containing the distortions associated with these subsets.
However, SDOG −DEE cannot be reliably used as the sign of the
correlation coefficient does not remain the same. For the other
subsets Noise, Exotic, and Exotic2 containing denoising, pattern
noise, local block-wise distortions, mean shift, and contrast
change, we get low correlation coefficients indicating problems
with the metric for these distortion types.

The poor results demonstrate that the proposed metrics are
limited in their scope and performance, and therefore should be
improved for the distortions found in the TID2008 database.

Metric Pearson Spearman Kendall
SDOG −CIELAB1 0.385 0.369 0.257
SDOG −CIELAB2 0.377 0.356 0.246
SDOG −CIELAB3 0.375 0.351 0.243
SDOG −CIELAB4 0.374 0.353 0.244

SDOG −DEE1 0.279 0.280 0.192
SDOG −DEE2 0.342 0.350 0.244
SDOG −DEE3 0.328 0.348 0.246
SDOG −DEE4 0.363 0.364 0.253
SDOG −DEE5 0.257 0.260 0.179

S-CIELAB 0.433 0.445 0.314
ΔE∗

ab 0.232 0.276 0.186
ΔEE 0.273 0.381 0.266

S−CIELABJOHNSON 0.318 0.312 0.209
S−DEE 0.294 0.288 0.196
Hue angle 0.262 0.295 0.198
SHAME 0.300 0.351 0.246

SHAME-II 0.408 0.405 0.273
UIQ 0.622 0.596 0.433
SSIM 0.550 0.634 0.459

SSIM-IPT 0.484 0.570 0.406
QCOLOR 0.522 0.482 0.338
VSNR 0.171 0.706 0.532
VIF 0.741 0.754 0.586

HVS REAL 0.199 0.175 0.120
PSNR-HVS 0.616 0.635 0.488

PSNR-HVS-M 0.589 0.606 0.466
ABF 0.275 0.259 0.175
ΔE∗

94 0.086 0.242 0.165
ΔE∗

00 0.086 0.243 0.165
MSE 0.535 0.561 0.406
RMS 0.536 0.561 0.406
PSNR 0.508 0.561 0.406

Structural Content 0.025 0.106 0.063
Average Difference 0.153 0.227 0.165
N-Cross-Correlation 0.087 0.347 0.238
Correlation Quality 0.026 0.045 0.031

Maximum Difference 0.189 0.452 0.315
Image Fidelity 0.253 0.532 0.378

Table 3: Comparison of the IQ metrics over all the images of
the TID2008 database. The results show that UIQ, VIF, P-
HVS, and P-HVS-M correlate rather well with subjective evalu-
ation. The best correlation coefficients for SDOG −CIELAB and
SDOG −DEE demonstrate that the proposed metrics have fairly
low performance for this set of test images.
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Evaluation Using Other Databases
We listed in Table 4 the Pearson correlation coefficients of

the IQ metrics for these image databases. Figure 4 illustrates the
performance of the metrics.

Luminance changed images, Pedersen et al.
The database includes four original images reproduced with

different changes in lightness. Each scene has been altered in
four ways globally and four ways locally [18, 19].

For this database, only a handful of IQ metrics correlate
reasonably well with subjective assessment. The original hue
angle algorithm, SHAME-II, and ABF exhibit the best Pearson
correlation coefficients. Additionally, we found that color-
difference formulae (ΔE∗

ab, ΔE∗
94, and ΔE∗

00) and trivial metrics
(MSE and RMS) outperform SDOG −CIELAB and SDOG −

DEE. The conclusion is that the proposed metrics are not good
estimates where the type of distortion is a local luminance shift.
The results also indicate that, as for the images from the TID2008
database, SDOG −CIELAB shows the best correlations with the
1st configuration and SDOG −DEE with the 4th configuration.
The differences between the configurations are minor, though.

JPEG and JPEG2000 compressed images, Caracciolo et
al.

The original images of this database were corrupted by
JPEG and JPEG2000 distortions, generating a total of 80
degraded images [20]. The parameters for these distortions were
randomly chosen with predefined ranges.

We found that all the metrics have low performance for the
images from this database, spanning a range below 0.5. This is
probably because these particular images were initially selected
in order to determine the just noticeable distortion. Only small
distortions were applied to the original images making it arduous
for the observers to assess IQ, and therefore also very difficult
for the IQ metrics. Regarding the performance of the proposed
metrics, the best Spearman correlation coefficients are 0.232 for
SDOG −CIELAB1 and 0.146 for SDOG −DEE3. PSNR-HVS-M,
PSNR, and maximum difference have sightly better performance
than the other metrics.

IVC database, Le Callet et al.
The IVC database contains blurred images and images

distorted by three types of lossy compression techniques - JPEG,
JPEG2000, and Locally Adaptative Resolution [17] .

The Pearson correlations for this database are in general
higher than those of the Caracciolo database, probably because
the range of the distortions was selected differently. The most
accurate IQ metrics are UIQ, VSNR, and VIF. When analyzing
the results, we can see that SDOG −DEE performs better than
SDOG −CIELAB and that SDOG −DEE3 provides the highest
correlation coefficient.

Images altered in contrast, lightness, and saturation,
Ajagamelle et al.

This database contains a total of 10 original images covering
a wide range of characteristics and scenes [21]. The images
were modified on a global scale with separate and simultaneous
variations of contrast, lightness, and saturation.

The results confirm that the proposed metrics work better
with global variations of image attributes. Because of the
DOG spatial filtering, they are also more efficient with contrast
altered images. SDOG −CIELAB has almost the same Pearson
correlation coefficients as SDOG − DEE, but both metrics are

slightly worse than most of the rest, indicating that the settings
of the new metrics should be refined. We can notice the good
correlations of the color-difference formulae, such as ΔE∗

ab, and
the PSNR-based metrics. Therefore, it could be interesting
to promote these metrics to compute image difference when
alterations in contrast, lightness, and saturation are performed
on a global scale, since they are computationally cheap and easy
to implement.

Gamut mapped images, Dugay et al.
In this dataset, 20 original images were gamut mapped with

five different algorithms [22, 23]. The images were evaluated by
20 observers in a pair comparison experiment.

We see from the results in Figure 4 that most of the
metrics fail utterly in evaluating perceived difference. This
is probably because in gamut mapping multiple attributes are
altered, therefore the objective assessment is very complex and
the observers may judge the images differently [22,23]. Previous
research has also shown that IQ metrics have problems when
multiple distortions occur simultaneously, as in gamut mapping
[38, 39]. This is not the case for TID2008 and some of the
other databases evaluated here, since usually only one attribute
changes in the images at the time.

Metric / Database Pedersen Caracciolo IVC Ajagamelle Dugay

SDOG −CIELAB1 0.201 0.232 0.288 0.407 0.047

SDOG −CIELAB2 0.200 0.196 0.268 0.483 -0.003

SDOG −CIELAB3 0.193 0.170 0.262 0.532 -0.012

SDOG −CIELAB4 0.197 0.178 0.269 0.504 -0.009

SDOG −DEE1 0.142 0.052 0.425 0.551 0.039

SDOG −DEE2 0.209 0.094 0.579 0.478 0.023

SDOG −DEE3 0.201 0.146 0.655 0.474 0.020

SDOG −DEE4 0.236 0.113 0.551 0.594 0.022

SDOG −DEE5 0.079 0.010 0.285 0.413 0.027

S-CIELAB 0.798 0.242 0.705 0.675 -0.067

ΔE∗
ab 0.764 0.156 0.539 0.751 -0.025

ΔEE 0.183 -0.041 0.023 0.597 -0.003

S−CIELABJOHNSON 0.778 0.199 0.485 0.584 0.016

S−DEE 0.179 0.080 0.295 0.402 -0.002

Hue Angle 0.805 0.065 0.345 0.625 0.006

SHAME 0.802 0.171 0.662 0.499 0.042

SHAMEII 0.827 0.126 0.458 0.622 -0.100

UIQ 0.446 0.050 0.819 0.634 0.313

SSIM 0.217 0.294 0.705 0.635 0.159

SSIM-IPT 0.302 0.247 0.706 0.658 0.005

QCOLOR 0.277 0.154 0.613 0.620 0.191

VSNR X 0.043 0.782 X 0.087

VIF 0.393 0.214 0.880 0.530 0.314

HVS REAL 0.338 0.084 0.298 0.480 -0.025

PSNR-HVS 0.633 0.249 0.730 0.786 0.074

PSNR-HVS-M 0.626 0.311 0.734 0.785 0.073

ABF 0.805 0.163 0.060 0.734 0.084

ΔE∗
94 0.650 0.130 0.369 0.743 0.016

ΔE∗
00 0.626 0.134 0.383 0.739 0.034

MSE 0.666 0.264 0.510 0.614 0.086

RMS 0.750 0.267 0.605 0.746 0.063

PSNR 0.656 0.312 0.671 0.723 0.045

Structural Content 0.058 -0.255 0.234 -0.702 -0.017

Average Difference -0.015 -0.207 -0.008 -0.733 -0.025

N-Cross-Correlation 0.004 0.082 -0.374 0.682 0.003

Correlation Quality 0.001 0.001 -0.060 0.165 0.004

Maximum Difference 0.108 0.451 0.653 -0.534 0.081

Image Fidelity 0.454 0.213 0.500 0.543 0.042

Table 4: Pearson correlation coefficients for the selected image
databases. The results are highlighted for the metrics showing the
best performance. ”X” indicates that the result is not available for
the metric.
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Figure 4: Performance of the IQ metrics across the databases. The figure shows the Pearson correlation coefficients for five different
sets of test images. We found that SDOG −CIELAB and SDOG −DEE have better correlations for certain artifacts or distortions, but do
not outperform state-of-the-art IQ metrics.

Conclusion and Perspectives
In this study, we proposed and assessed two new ID metrics

named SDOG −CIELAB and SDOG −DEE. It was shown that
these metrics have better performance for certain attributes or
distortions. We thought that the alternative ideas behind the DOG
model would make them more efficient ID metrics. Nevertheless,
the results indicate that none of them outperforms common state-
of-the-art IQ metrics. Regardless of the color-difference formula
that is chosen, the metrics do not provide high performance
when extensively tested. We conclude that SDOG −CIELAB
and SDOG − DEE are not yet effective measures of perceived
difference. We did not achieve our objective of developing a
reliable metric. Even so, an important stride has been taken
towards a comprehensive ID evaluation.

In the future, we will seek to improve these trial models
into more accurate and consistent metrics. An interesting line
of inquiry is to use the DOG as a pre-filter in conjunction with
a more classical spatial filtering module, that uses a CSF for
example.
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